Механический нагнетатель

Турбонагнетатель

Турбонагнетатель в сборе. Турбина — слева, компрессор — справа

Простой турбонагнетатель фиксированной геометрии в разрезе

Таковым является нагнетатель, конструкция которого включает в себя миниатюрную турбину, а принцип работы основан на использовании энергии потока выхлопных газов самого мотора, на который осуществляется наддув. Выхлопные газы, воздействуя на турбину, располагающуюся в выпускной системе сразу за выпускным коллектором, раскручивают её, а она передаёт энергию вращения на компрессор. Принципиальная конструкция каждого из двух исполнительных узлов турбонагнетателя в общем и целом идентична для любой разработки, доведённой до стадии работающего агрегата, и предполагает одну одноконтурную турбину и один . При этом фактическая конструкция турбины, компрессора, вала и корпуса может быть весьма различной: так, помимо канонических простых совмещённых турбонагнетателей фиксированой геометрии на подшипниках скольжения, возможно применение турбин изменяемой геометрии, применение двойных спиральных каналов подвода газов к турбине (так называемый Twin-Scroll), применение двойных каналов выхода воздуха с компрессора, разнесение турбины и компрессора на существенное расстояние друг от друга, применение керамических роторов, установка вала на подшипниках качения. Важными (хотя и не особо декларируемыми) критериями мощности и эффективности турбонагнетателя являются наружные диаметры его турбинного и насосного колёс (что можно примерно оценить визуально по размеру корпуса), частота вращения ротора и величина турболага, присущего всем без исключения турбинам.

Турбонагнетатель всегда работает в режиме высоких температур выхлопных газов, а подшипники вала турбонагнетателя являются самой термонапряжённой деталью мотора, которая контактирует с моторным маслом, что накладывает особые требования как к технологии производства деталей, составляющих турбонагнетатель, так и к качеству масла и его ресурсу. И то и другое долгое время было одним из сдерживающих технологических факторов для какого-либо массового внедрения турбонагнетателей на бензиновых моторах .

Любой бензиновый мотор с турбонагнетателем изначально проектируется под наддув. Применение турбонагнетателя на бензиновом моторе, изначально спроектированном как , без переделок в принципе возможно, но приведёт к быстрому (если не моментальному) разрушению такого мотора при работе. Необходимость постоянного контроля детонации требует наличия некоей управляющей электроники, что обычно подразумевает систему питания мотора на основе электронного (или как минимум электронно-механического) впрыска. Массовые карбюраторные моторы с турбонагнетателями были крайне редки ввиду чрезмерной механической сложности своих систем питания. Широкое применение турбонагнетатели получили на дизельных моторах коммерческого транспорта — на моторах грузовиков, тракторов, локомотивов, судов. Здесь разрешающими факторами стали повышенная детонационная стойкость дизельных моторов и их более высокий КПД, предполагающий меньший уровень теплового излучения, относительная нетребовательность к эффективности работы мотора коммерческого транспорта в переходных режимах, достаточное пространство моторного отсека.

Особенностью работы турбонагнетателя в сравнении с другими агрегатами наддува является то, что в случае его применения эффект от наддува всегда превышает энергетические затраты на наддув. То есть, для любого мотора, оснащённого турбонагнетателем, всегда возможно получить такой режим наддува, который форсирует мотор настолько, что разрушит его. Мощность любого мотора с турбонагнетателем в 100 % случаев ограничивается прочностью самого мотора, его моторесурсом, а не эффективностью турбонагнетателя. Необходимость ограничения эффекта наддува есть причина того, что турбонагнетатель никогда не применяется на моторах сам по себе, а только комплексно в составе системы турбонаддува, в которой он является основным её элементом, но не единственным.

Механический нагнетатель на карбюраторный авто – варианты построения

Механический нагнетатель был создан одним из первых, почти после появления ДВС. Он связан непосредственно с коленвалом двигателя авто и начинает работать сразу же после его запуска, обеспечивая подачу воздуха пропорционально оборотам мотора. Это является несомненным достоинством, но такой нагнетатель для своей работы отбирает часть мощности двигателя.

Существует несколько самых распространенных вариантов построения подобных устройств, наиболее известные из них показаны на фото. Их конструктивные особенности рассмотрены ниже:

  1. Нагнетатель ROOTS. Первоначально это были две обычные шестеренки, вращающиеся в разные стороны, помещенные в замкнутый корпус. С течением времени они видоизменились до того, что представлено на фото. Работает такой нагнетатель достаточно просто – вращающиеся лопатки ротора создают воздушный поток от входа к выходу. Основной недостаток подобных устройств – подача воздуха осуществляется неравномерно, что приводит к пульсации давления. Кроме того, после прохождения устройства возникающая турбулентность воздуха вызывает его нагрев. К достоинствам надо отнести простоту, компактность, и надежность, низкий уровень шума.
  2. Нагнетатель LYSHOLM. Относится к аппаратам винтового типа. Работает подобное устройство аналогичным образом – воздушный поток создается вращающимися роторами. Благодаря малому зазору между ними, обеспечивается требуемое качество наддува. Главным отличием подобного устройства будет сжатие воздуха внутри корпуса. Однако сложности проектирования и изготовления таких изделий вызывают их высокую стоимость, что ограничивает их применение в массовом производстве авто.
  3. Центробежный нагнетатель. Является наиболее распространенным типом и применяется как самостоятельно, в виде компрессора, так и в составе турбо устройств. Вращающиеся лопатки захватывают воздух и отбрасывают его на периферию корпуса. Двигаясь вдоль корпуса, имеющего улиткообразную форму, воздушный поток на выходе приобретает необходимое давление.

Для того чтобы центробежный нагнетатель работал эффективно, его крыльчатка должна вращаться с высокой скоростью. Обеспечение такого режима работы связано с трудностями смазки подшипников и создания подобных условий. Однако простота и относительно низкая стоимость самих устройств, сделала их наиболее популярными среди других типов нагнетателей. Особенно часто они используются для тюнинга авто, в том числе и семейства ВАЗ.

Конструкция и принцип работы механического наддува

В современном автомобилестроении применяется несколько видов систем механического наддува, каждая из которых имеет свои конструктивные особенности и принцип нагнетания воздуха.

Устройство механического наддува

Система механического наддува состоит из следующих элементов:

  • механический нагнетатель (компрессор);
  • интеркулер;
  • дроссельная заслонка;
  • заслонка перепускного трубопровода;
  • воздушный фильтр;
  • датчики давления наддува;
  • датчики температуры воздуха во впускном коллекторе.

Схема работа механического наддува

Управление механическим нагнетателем осуществляется при помощи дроссельной заслонки, которая при высоких оборотах открыта. При этом заслонка трубопровода закрыта, и весь воздух поступает во впускной коллектор двигателя. Когда двигатель работает на низких оборотах, открыта под небольшим углом, а заслонка трубопровода открыта полностью, что обеспечивает возврат части воздуха на вход компрессора.

Поступающий из нагнетателя воздух проходит через интеркулер, что снижает температуру нагнетаемого воздуха примерно на 10°C, способствуя более высокой степени его сжатия.

Типы привода механического наддува

Ременной привод кулачкового компрессора

Передача крутящего момента от коленчатого вала к механическому компрессору может осуществляться различными способами:

  • Система прямого привода – предполагает  монтаж компрессора непосредственно на фланец коленчатого вала двигателя.
  • Ременный привод. Передача усилий реализуется при помощи ремня. Различные производители используют свои виды ремней (плоские, клиновидные или зубчатые). Системы с использованием ремня характеризуются коротким сроком службы и вероятностью возникновения проскальзывания.
  • Цепной привод. Имеет аналогичный ременному приводу принцип.
  • Шестеренчатый привод. Недостатком такой системы является повышенный шум и большие габариты.

Виды механических компрессоров

Центробежный компрессор

Каждый тип привода наддува имеет свои эксплуатационные особенности. Всего различают три вида механических нагнетателей:

  • Центробежный нагнетатель. Самый распространенный вид механических нагнетателей. Основной рабочий элемент системы – колесо (крыльчатка), которое имеет сходную конструкцию с компрессорным колесом . Оно вращается со скоростью порядка 60 000 оборотов в минуту. При этом воздух всасывается в центральную часть компрессорного колеса в режиме высокой скорости и малого давления. Пройдя через лопасти нагнетателя, воздух подается во впускной коллектор, но уже в режиме низкой скорости и высокого давления. Этот вид нагнетателя используется в комплексе с турбокомпрессорами для устранения .
  • Винтовой нагнетатель. Представляет собой систему из двух вращающихся шнеков (винтов) конической формы. Воздух, попадая в более широкую часть, проходит по камерам компрессора и, благодаря вращению, сжимается и нагнетается в патрубок впускного коллектора. Такие системы применяются в основном на спортивных и дорогостоящих автомобилях, поскольку достаточно сложны в изготовлении. Их преимущество – высокая эффективность работы.
  • Кулачковый нагнетатель (roots). Один из первых видов механических нагнетателей. Конструктивно он представляет собой два ротора со сложным профилем сечения. Оси вращения роторов соединяются двумя одинаковыми шестернями. При вращении системы воздух перемещается между стенками корпуса и кулачками, в результате чего происходит его нагнетание во впускной трубопровод. Недостатком этой системы является образование избыточного давления, что провоцирует сбои в работе наддува. Для устранения этого явления в конструкции кулачкового нагнетателя предусматриваются либо муфта с электрическим приводом (управление с отключением нагнетателя), либо перепускной клапан (без отключения нагнетателя).

Винтовой нагнетатель

Механические нагнетатели довольно часто применяются на автомобилях марок Cadillac, Audi, Mercedes-Benz а также Toyota.  При этом кулачковые и винтовые компрессоры устанавливаются преимущественно на мощных спортивных автомобилях с бензиновыми двигателями, а центробежные входят в систему двойного турбонаддува для дизельных моторов.

Существуют несколько видов механических нагнетателей:

  • центробежный;
  • объёмный;
  • винтовой;
  • лопастный;
  • спиральный. 

Центробежные нагнетатели воздуха

Ввиду доступности цены и безотказности в работе самый популярный из всех нагнетателей – центробежный. Главной внутренней частью его является крыльчатка, которая находится в похожем на улитку кожухе. Крыльчатка может приводиться в движение разными способами: электрическим, механическим (от коленчатого вала) или турбиной, раскручиваемой выхлопными газами. 

Раскручивая воздух, крыльчатка создаёт центробежную силу, которая создаёт разряжение воздуха в центре «улитки», где находится входное отверстие. Попадая внутрь «улитки», воздух выходит под давлением из выходного отверстия сбоку. 

Есть недостатки у данного способа. Для эффективной работы такого нагнетателя у крыльчатки должны быть нешуточные обороты, и этот способ поддува создаёт много шума. 

Объёмный нагнетатель воздуха

Этот компрессор будто выполнен по образу масляного насоса. Два ротора, похожие на увеличенные шестерни насоса системы смазки, таким же способом качают воздух. Эти два ротора сближаются друг с другом и с корпусом на максимально допустимое расстояние, но не касаются. Они между собой синхронизированы шестернями, что исключает соприкосновения. 

Такой способ намного тише центробежного, но тоже имеет ряд своих недостатков. Один из существенных – это порог мощности, т.е. при разгоне коленчатым валом до определённых оборотов насос перестаёт подавать необходимое количества воздуха. Также он очень сильно греется. Это происходит не только из-за эффекта сжатия воздуха, но дополнительно из-за «турбулентности». Такие нагнетатели оборудуют дополнительным охлаждением, и это увеличивает их массу. 

Винтовой нагнетатель

Роторы этого нагнетателя выполнены в виде двух винтов с правой нарезкой. Они синхронно крутятся на минимальном расстоянии друг относительно друга, не соприкасаясь. Захватывают порциями воздух и «проталкивают» его. Такие компрессоры требуют точно подогнанных деталей. В результате такой точной калибровки деталей они работают практически без потерь даже на малых оборотах коленчатого вала. Вот только из-за высокой сложности изготовления такой нагнетатель стоит немалых денег и почти не используется на современных машинах. 

Лопастной нагнетатель

Этот нагнетатель имеет сравнительно простое устройство. Корпус выполнен в виде цилиндра. Ротор на четверть меньше корпуса и немного смещён от центра. Лопасти ротора выдвигаются посредством центробежной силы и соприкасаются с корпусом. Захватывая большие порции воздуха двумя лопатками, он переносит воздух к выходному отверстию, создавая давление. Входное и выходное отверстия расположены по краю цилиндрического корпуса, но таким образом, чтобы крыльчатка ротора захватывала больше воздуха. 

Этот компрессор довольно эффективен даже на небольших оборотах коленчатого вала. Такие насосы имеют хороший КПД, и они почти не нагревают воздух. У этих нагнетателей один недостаток – быстрый износ лопастей в результате трения о корпус. 

Спиральный компрессор

В литом корпусе, выполненном изнутри в виде спирали, находится точно повторяющий его изгибы плунжер. Тот приводится в движение эксцентричным механизмом таким образом, чтобы воздух перемещался от краёв корпуса к центру. В центре находится выходное отверстие, в которое воздух буквально выдавливается. Избыток давления контролируется перепускным клапаном. 

Электронагнетатель

Схема комбинированного наддува, состоящего из турбины, мотор-генератора, компрессора и аккумуляторной батареи. Работа наддува в режиме турбонагнетателя постоянна, в режиме турбонагнетателя и электронагнетателя — повторно-кратковременна.

Принцип работы электронагнетателя (нагнетателя с электрическим приводом) основан на использовании для привода компрессора электроэнергии из бортовой электрической сети автомобиля. Принципиальная конструкция в общем и целом едина — высокооборотный электромотор и связанный с ним общим валом центробежный компрессор.

Подобные нагнетатели получают распространение на бензиновых моторах легковых автомобилей в последние годы, ввиду широкого внедрения бортовых электросетей с относительно высоким напряжением (~50V) и включением в состав силового агрегата мощных генераторов, аккумуляторов большой ёмкости и конденсаторов. При этом электронагнетатели являются лишь частью общего агрегата наддува и комбинируются с турбонагнетателем (одним или двумя) для совместной работы в рамках функции наддува. Включение электронагнетателя здесь обычно ограничивается переходными режимами работы самого мотора, и в первую очередь такими, на которых эффективность турбонагнетателя низка, например, раскруткой мотора с оборотов холостого хода. В качестве постоянного источника наддува электронагнетатели не применяются, ввиду существенных потерь на перевод механической энергии ДВС в электрическую для питания электромотора и опять в механическую для работы компрессора.

Центробежный нагнетатель

Центробежный нагнетатель

Подобные нагнетатели получили в настоящее время наибольшее распространение,
как в виде отдельного приводного компрессора, так и главным образом в составе
турбонаддува.

Основная деталь центробежного нагнетателя – рабочее колесо, или крыльчатка.
Она имеет довольно сложную конусообразную форму. Лопатки крыльчатки играют самую
главную роль. От того, насколько правильно они спроектированы и изготовлены,
зависит результирующая эффективность всего нагнетателя. Итак, воздух, пройдя по
сужающемуся воздушному каналу в нагнетатель, попадает на радиальные лопасти
крыльчатки. Лопасти закручивают и отбрасывают его центробежной силой к периферии
кожуха, где имеется диффузор. Зачастую диффузор имеет лопатки (порой с
регулировкой угла атаки), призванные снизить потери давления. Далее воздух
выталкивается в окружной воздушный туннель (воздухосборник), который чаще всего
имеет улиткообразную форму (воздухосборник, описывая окружность, постепенно
расширяется в диаметре). Такая конструкция создает необходимое давление
воздушного потока на выходе из нагнетателя. Дело в том, что внутри кольца воздух
поначалу движется быстро, и его давление мало. Однако в конце улитки русло
расширяется, скорость воздушного потока понижается, а давление увеличивается.

В силу самого принципа работы у центробежного нагнетателя есть один
существенный недостаток. Для эффективной работы крыльчатка должна вращаться не
просто быстро, а очень быстро. Фактически производимое центробежным компрессором
давление пропорционально квадрату скорости крыльчатки. Скорости могут быть 40 
тыс. об/мин и более, а для высоконапорных компрессоров дизелей они приближаются
к 200 тыс. об/мин. И в том случае если привод осуществляется от двигателя
посредством ременной передачи на шкив турбины, шум от такого устройства довольно
сильный. Проблема шумности и ресурса элементов привода частично снимается
введением дополнительного мультипликатора, который снижает КПД механического
нагнетателя.

Высокие рабочие обороты накладывают особые требования на качество
используемых материалов и точность изготовления (учитывая огромные нагрузки от
центробежных сил). К минусам самого принципа нагнетания можно также отнести
некоторую задержку в срабатывании. Как правило, центробежный нагнетатель дает
прибавку в мощности на довольно высоких оборотах двигателя. Сначала давление
нарастает медленно, но затем, с увеличением оборотов, довольно резко возрастает

Эта особенность делает центробежные нагнетатели наиболее пригодными для тех
случаев, когда более важно поддержание высоких скоростей, а не интенсивность
разгона

Центробежные нагнетатели очень популярны: сравнительно низкая цена и простота
установки способствовали тому, что компрессоры этого типа почти вытеснили
другие, более дорогие и сложные типы, особенно в сфере тюнинга. Недостатки
данного типа нагнетателей известны: повышенные шум и износ, эффективная прибавка
мощности только на высоких оборотах.

Установка механического комперссора на двигатель: тонкости и нюансы

Начнем с того, что главной задачей является подбор механического нагнетателя, который будет соответствовать ряду требований (вес, габариты, производительность, режимы работы, особенности смазки, исполнение привода и т.д.).

Для этих целей можно приобрести компрессор от какого-либо автомобиля или же заказать готовый тюнинг-комплект для форсирования двигателя. Также отмечены случаи, когда нагнетатель изготавливался самостоятельно, однако такие самодельные решения достаточно редки, особенно на территории СНГ.

На практике зачастую устанавливают тюнинг-комплекты (турбо-Кит наборы), реже используют детали б/у, которые снимаются с других компрессорных автомобилей. Плюсом готового комплекта является то, что такой набор рассчитан для установки на конкретную модель автомобиля. Это значит, что вместе с компрессором поставляются крепежи, ремни, привод, воздуховоды, прилагается инструкция и т.д.

Параллельно следует учитывать, что также необходимо доработать штатную систему охлаждения и топливоподачи с учетом изменившейся производительности силового агрегата. Если просто, форсирование двигателя при помощи компрессора предполагает то, что топлива за единицу времени нужно подавать больше. Для этого может понадобиться менять бензонасос, ставить боле производительные форсунки и т.д.

Также не следует забывать о том, что большая мощность достигается за счет сжигания большего количества топлива. Закономерно, что выделение тепла в этом случае также сильно увеличивается, а мотор потребует более интенсивного охлаждения.

1 Турбонагнетатели – с чем столкнулись инженеры?

Сложно это представить, но еще в 1909 году автомобиль с двигателем внутреннего сгорания установил рекорд скорости в 200 км/ч – достижение для тех времен невероятное. Еще сложнее представить объем двигателя, благодаря которому удалось разогнать авто до такой скорости – 28 литров! Даже речи быть не могло, чтобы запустить такие агрегаты в массовое производство, ведь их обслуживание своими руками было практически невозможным, ввиду огромных габаритов двигателя.

К счастью, дальнейшие разработки автомобильных инженеров велись в сторону уменьшения объема при сохранении мощностей, а также упрощения конструкции. Чтобы автомобиль стал массовым, следует дать возможность ремонтировать его своими руками – так размышляли первые автомобилестроители и были совершенно правы.

Благодаря появлению нагнетателя, удалось при сохранении всех параметров сходу увеличить мощность на целых 50 %! Сегодня опытному автомобилисту не составит труда своими руками установить одну из популярных систем турборежима.

Представить принцип работы такого устройства совершенно не сложно даже школьнику младших классов. Работу мотора обеспечивает постоянное сгорание топливно-воздушной смеси, которая поступает в цилиндры двигателя. В зависимости от возможностей двигателя и режимов его работы устанавливается оптимальное соотношение воздуха и топлива. В обычных условиях объем ТВС ограничен размерами цилиндра – внутрь камеры смесь попадает благодаря разрежению на такте впуска.

Нагнетатель воздуха позволяет подать внутрь цилиндра на впуске больше топливно-воздушной смеси. Больше ТВС – больше энергии при сгорании, больше мощность агрегата. Казалось бы, все просто, как дважды два, однако без нюансов не обошлось. Увеличение мощности двигателя таким способом повлекло целый ряд проблем. Главная из них – возрастание количества тепловой энергии при сгорании смеси, что в свою очередь влечет быстрое прогорание поршней, клапанов, поломку системы охлаждения. И далеко не всегда последствия удается ликвидировать своими руками.

Кроме того, с увеличением объема ТВС увеличивается и шанс детонации двигателя в буквальном смысле этого слова. Даже без детонации преждевременный износ агрегата гарантирован. Чтобы уменьшить негативные последствия для автомобиля (избежать их полностью не удается), принято использовать высокооктановое топливо, а также декомпрессию. В первом случае приходится своими руками платить немалые деньги, а во втором существенно снижается мощность.

Механический нагнетатель на ВАЗ – за и против

Чем больше мотор и чем больше в нем цилиндров – тем выше его мощность. Таков самый первый вывод при наблюдении за моторами и машинами. Но это не всегда именно так. Чем больше топлива сгорает в цилиндрах двигателя, тем большую мощность он способен показать. Но объем цилиндров конечен, а мощность хочется иметь повышенную. Вот в этих случаях на помощь приходит механический нагнетатель воздуха.

Принцип его действия чрезвычайно прост и работает на любых автомобилях, в том числе семейства ВАЗ 2107, 2106, 2114, 2112 – он обеспечивает подачу дополнительного воздуха в мотор, в результате чего:

  • увеличивается продувка цилиндров, и они лучше освобождаются от остатков сгоревшего топлива;
  • в цилиндры мотора попадает больше топлива, что обеспечивает получение большей мощности;
  • повышается степень сжатия, что также дает прирост мощности.

Такой подход практически похож на режим турбо, применяемый на дизелях. Только там для этих целей используется турбонагнетатель, приводимый в действие выхлопными газами, а в этом случае – механический нагнетатель воздуха, который ремнем связан с коленвалом двигателя. Такой подход гораздо проще, подача воздуха зависит от оборотов двигателя, чем они выше, тем его поступает больше; а также не требует обеспечения режимов работы турбины и может быть выполнен своими руками на любом автомобиле ВАЗ.

Стоит учесть, что если механический нагнетатель ставится на инжекторную машину ВАЗ, то потребуется изменение прошивки. Однако подобную доработку можно сделать и для карбюраторного авто, только в этом случае, скорее всего, придется менять жиклеры в карбюраторе и регулировать угол опережения зажигания.

Не стоит забывать, что вами производится форсирование двигателя ВАЗ, будь то любая его модель 2107, 2106, 2114, 2112, работа должна выполняться комплексно, и только тогда возможно получение ожидаемого результата. Однако это не такая уж и большая плата за прирост мощности.

Что такое механический нагнетатель

В этом варианте наддува мотора основным узлом является нагнетающий узел. Он отличается от турбины тем, что механизм приводится в движение не за счет давления выхлопных газов, а за счет двигателя, для этого используется привод. Основные названия этого варианта – компрессор (этот термин можно встретить во многих спортивных моделях Мерседесов) или суперчарджер (применяют в основном в Северной Америке). Подобные решения бывают двух основных типов:

  1. Центробежный нагнетатель.
  2. Механический объемного типа.

Независимо от разновидности принцип работы нагнетателей примерно одинаков. Но при этом за образец всегда берутся варианты объемного типа. Как показали исследования инженеров многих концернов, производящих автомобили, установка компрессора не сильно влияет на ресурс мотора и уменьшает его незначительно.

А если применять модели нагнетателей, повышающие обороты двигателя в нижнем и среднем диапазонах, то мотор, будет служить на порядок дольше, чем без тюнинга

Конечно, очень важно правильно подобрать модель компрессора и установить его по рекомендациям производителя, чтобы добиться максимальной эффективности

К сведению!

При установке нагнетателя зачастую приходится менять поршни и шатуны на кованые, а также дорабатывать ряд других деталей. Это связано с тем, что с ростом мощности повышается нагрузка на узлы мотора, увеличивается давление в камере сгорания, и перепады температур становятся на порядок больше.

Как устроен наддув

Кроме основного элемента в систему входят и другие узлы. Поэтому при модернизации двигателя приходится устанавливать ряд элементов. Конструкция имеет такие составляющие:

  1. Центробежный или объемный нагнетатель.
  2. Один или несколько датчиков температуры воздуха.
  3. Интеркулер.
  4. Фильтр очистки воздуха.
  5. Заслонка в перепускном трубопроводе и дроссельная заслонка.
  6. Датчик давления воздуха.

Главный управляющий узел компрессора – дроссельная заслонка. При больших нагрузках она открыта до конца, а заслонка трубопровода закрыта, чтобы весь воздух подавался непосредственно во впуск.

На малых оборотах заслонка открывается частично, а клапан перепускного трубопровода открыт, чтобы возвращать неиспользуемый воздух обратно. Обычно в системе расположен интеркулер, позволяющий охлаждать проходящий воздух. А это увеличивает степень сжатия: чем воздух холоднее, тем он плотнее.

К сведению!

В некоторых системах интеркулер не используется, это существенно упрощает их.

Механический наддув всегда работает от коленвала, но привод может быть реализован по-разному. Основные варианты:

  1. Прямой привод, в этом случае компрессор устанавливают на фланцы коленчатого вала. Эффективность высокая, но если мотор изначально не был рассчитан на данный узел, то реализовать проект сложно.
  2. Шестеренчатый вариант работает за счет системы шестерней. Это достаточно простое и очень надежное решение, но при работе такой привод издает очень много шума, поэтому его не используют те, кто ценит комфорт.
  3. Ременная передача – самая популярная и распространенная благодаря простоте конструкции и минимальному уровню шума. Могут использоваться разные типы ремней – клиновидные, зубчатые либо плоские. Нужно постоянно проверять натяжение и менять ремень. При износе он начинает проскальзывать на высоких нагрузках.
  4. Привод от цепи тоже относится к надежным, но его сложно устанавливать и необходимо постоянно обслуживать для нормальной работы. По уровню шума он уступает только ременной передаче.

Система достаточно проста, разобраться в устройстве механического нагнетателя несложно, гораздо труднее установить его на машину и настроить так, чтобы обеспечить максимальную эффективность. Лучше всего подобрать узлы от одного производителя, тогда точно не возникнет вопросов с совместимостью.

Нагнетатели, приводимые волновым давлением газа

Нагнетатель, приводимый волновым давлением газа (рис. «Нагнетатель, использующий волновое давление газов» ) представляет собой газодинамиче­скую машину, основным компонентом которой является ротор с открытыми каналами, рас­положенными коаксиально по его окружности («секционное колесо» или «ротор»). Через отверстия для впуска и выпуска свежего воздуха и отработавших газов и торцевые поверхности ротора осуществляется повышение давления в каналах. Свежий воздух сжимается в каналах ро­тора в ходе газодинамических процессов. В ходе этого процесса свежий газ и отработавшие газы кратковременно вступают в контакт друг с дру­гом. Существенно важным для функционирова­ния является тот физический факт, что процесс газодинамического сжатия происходит в течение значительно более короткого периода времени, чем время смешивания двух газовых потоков.

Принцип действия нагнетателя, приводи­мого в действие волновым давлением газа, основан на том, что волна давления на откры­том конце отражается, как волна разрежения, а на закрытом конце — как волна давления; это также относится к отражению волны раз­режения. Для контроля и поддержания этого

процесса отверстия каналов должны проходить через «открытые концы» и «закрытые концы», т.е. секционный ротор должен вращаться. Мощность привода используется просто для компенсации потерь в подшипниках ротора и потерь на вентиляцию и для ускорения ротора в случае внезапного увеличения нагрузки. Путем соответствующего конфигурирования тракта прохождения газа в корпусе можно обеспе­чить достаточно равномерное распределение температуры в роторе с целью обеспечения достаточно малых зазоров. Акустические ха­рактеристики могут быть улучшены путем со­ответствующего конфигурирования секций.

Диаграммы газовых потоков и состояний (рис. «Схема потоков газов и диаграмма состояний нагнетателя, использующего волновое давление газов» ) иллюстрируют процессы в базовом на­гнетателе, приводимом в действие волновым давлением газа при полностью открытом дрос­селе и умеренной частоте вращения коленча­того вала. Энергообмен в каналах происходит со скоростью звука, и благодаря используе­мым принципам действия нагнетатель очень быстро реагирует на изменение потребности двигателя, причем фактическое время реакции определяется процессами наддува в воздухо­водах и выпускных трубах. Скорость звука, а также физические характеристики являются функцией температуры, что означает, что они в основном зависят от величины крутящего момента двигателя, а не от частоты вращения коленчатого вала.

Нагнетатель Comprex

Если передаточное отношение между двига­телем и секционным ротором постоянно, что и имеет место для приводимого при помощи ременной передачи нагнетателя, волновой процесс оптимален только в определенной ра­бочей точке. Для устранения этого недостатка в передней части кожухов размещают специ­альные «карманы», позволяющие получить высокую производительность нагнетателя и оптимальную кривую наддува в относительно широком диапазоне рабочих режимов.

Ротор нагнетателя Comprex имеет постоян­ную смазку, а подшипник ротора расположен со стороны подвода и отвода воздуха. Воз­душный кожух изготовлен из алюминия, а для газа — кожух из материала NiResist. Ротор с осевыми ячейками изготовлен методом литья по выплавляемой модели. Давление наддува регулируется в соответствии с потребностью двигателя при помощи перепускного клапана.

Нагнетатель Нуртех

дальнейшим развитием нагнетателя Comprex является нагнетатель Нургех, который пока что не поступил в серийное производство, но рассматривается возможность его применения на автомобилях с бензиновыми двигателями малого рабочего объема. Ротор нагнетателя Нургех приводится во вращение независимым электродвигателем, благодаря чему нагнета­тель может быть лучше адаптирован к рабо­чему состоянию двигателя.

В дополнение к другим модификациям, улучшающим пуск холодного двигателя, асим­метричное расположение секций позволило улучшить акустические характеристики. Газо­вые карманы переменного объема позволяют повысить эффективность в нижнем диапазоне частоты вращения коленчатого вала с соот­ветствующим увеличением давления наддува. Применение нагнетателя Нургех требует на­личия современной электронной системы управления двигателем.

В следующей статье я расскажу о турбокомпрессорах для двигателей внутреннего сгорания.

РЕКОМЕНДУЮ ЕЩЁ ПОЧИТАТЬ:

Что получается в итоге

  1. Компрессор обеспечивает более правильную и стабильную работу двигателя во всех режимах работы, продлевается долговечность мотора;
  2. Турбина не отнимает процент общей мощности ДВС;
  3. Компрессор проще установить и настроить;
  4. Турбина потребует организации подвода и слива масла;
  5. Компрессор имеет постоянную отдачу, а турбина зависит от оборотов ДВС;
  6. Турбина потребует регулярной диагностики и обслуживания, компрессор проще обслуживать;
  7. Компрессор потребляет больше топлива и демонстрирует меньший показатель КПД сравнительно с турбиной;
  8. Турбина устанавливается в двигатель с доработками, компрессор же представлен полностью отдельным устройством и обеспечивает простоту при монтаже;
  9. Турбина предоставляет лучшие показатели на высоких и максимальных оборотах и пиковых скоростных режимах; Компрессор выделяется подхватом в самом «низу»;
  10. Компрессор можно свободно подобрать и приобрести, причем сделать это можно практически под любую модель авто, а вот выбор турбин заметно ограничен;
  11. Стоимость компрессора и его установки получается более доступной по сравнению с турбиной;

Как вы уже поняли из всего вышесказанного, установка любого типа компрессора является не самой простой задачей. Перед установкой стоит тщательно взвесить все «за» и «против» относительно каждого из доступных решений по обеспечению наддува, а также просчитать необходимые итоговые показатели мощности в соответствии с поставленной задачей.

Сегодня же оптимальным можно считать систему двойного наддува, когда на одном моторе задействованы механический компрессор и турбонаддув одновременно. При этом устройства работают на разных оборотах, обеспечивая максимум эластичности и комфорта в широком диапазоне оборотов двигателя.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector