Особенности работы впускного коллектора с изменяемой геометрией
Содержание:
- Выпускной коллектор
- Как будут работать клапана при неправильно выставленном зазоре
- Турбулентность
- Преимущества и недостатки лучевых систем отопления
- Для чего нужен
- Принцип действия и особенности формирования потока горючей смеси
- Зачем в машине нужен впускной коллектор
- Устройство и принцип работы
- Подсос воздуха во впускном коллекторе
- Ремонт и обслуживание впускных коллекторов
- Форма и объемная эффективность
Выпускной коллектор
Итак, второй претендент, он также выполняет немаловажную роль – отвод сгоревших газов. После того как впускные клапана были закрыты, топливо сжимается и поджигается свечой зажигания – происходит мини взрыв, поршни идут вниз – открываются выпускные клапана и отводят сгоревшие газы.
Вот только после клапанов они должный выйти в глушитель, а собирает их, из каждого цилиндра как раз выпускной коллектор (также по одной трубе на цилиндр). Он также подсоединен своей широкой частью к головке блока, только (если утрировать) с другой стороны, далее по трубам газы собираются в одну большую, как правило, сначала стоит катализатор, который дожигает газы, затем после него уже идет глушитель (может стоять и отвод для турбины). После этого газы уходят дальше после в окружающую среду. Стоит упомянуть – этот тракт гасит не только отработанные газы, но и звук выхлопа! Точнее не он сам, а глушитель которую он передает «отработку».
Как вы понимаете выпускной коллектор, работает с высокими температурами, ведь зачастую выхлоп может разогреваться до 950 градусов Цельсия. Поэтому обязательно нужно применять металлы, да не простые, а тугоплавкие способные выдерживать высокие показатели «тепла».
В этот отводящий коллектор, зачастую вкручивают датчик, это «лямба-зонт» или кислородный датчик, он «следит» за содержанием кислорода и других газов в выхлопе.
Благодаря этому датчику корректируется подача топливной смеси через наш «подающий» коллектор, то есть получается взаимосвязь.
Выпускной тракт, обычно в автомобилях очень прочный, служит почти весь срок эксплуатации автомобиля.
Как будут работать клапана при неправильно выставленном зазоре
Двигатель работает в жёстком температурном режиме, от высокой температуры металл расширяется. Поэтому, если толкатель плотно прижимается к кулачку распредвала, происходит следующее:
- При нагреве впускной клапан не сможет герметично прилегать на своё место, и часть воспламенившейся смеси будет выброшена через эту щель.
- Из-за неплотного прилегания широкой части клапана к блоку нарушается его охлаждение, и он быстрее разрушается. Особенно это касается выпускных клапанов, работающих в более жестких температурных условиях. Впускные охлаждаются поступающей смесью.
- Нарушается компрессия, мощность заметно падает, износ деталей сильно ускоряется.
То же самое произойдет, если неплотно закрываются выпускные клапана.
Уменьшится зазор может из-за износа фаски на широкой части клапана – «тарелке», да и его «седло» также изнашивается из-за постоянных ударов и высокой температуры. Поэтому «тарелка» постепенно утопает в «седле» немного глубже, а толкатель приближается к кулачку. Конечно, эти величины очень малы – микроны, но всё-таки постепенно начинают сказываться на работе двигателя.
Случается и обратная ситуация, когда зазор слишком велик. Например, неизбежно происходит износ кулачков распредвала и поверхности толкателя. Зазор между ними увеличивается. В итоге нарушается работа двигателя – впускные клапана открываются чуть позже, и смесь не успевает попасть в камеру сгорания в достаточном количестве. От этого мощность двигателя падает, и работает он с шумом – из-за стука распредвала по толкателям. Ситуация усугубляется и более поздним открытием выпускных клапанов, отчего отработанные газы удаляются из цилиндра не полностью.
В любом случае, как только двигатель стал хуже «тянуть», тем более еще и работать с большим шумом, пора отправляться на СТО. Иначе однажды поездка закончится вызовом эвакуатора, а затем заменой некоторых узлов двигателя. Так экономия нескольких сотен рублей и часа времени приводит к длительному и дорогостоящему ремонту.
Турбулентность
Карбюратор или топливные форсунки распыления капель топлива в воздух в коллекторе. Из-за электростатических сил и конденсации из пограничного слоя часть топлива будет образовывать лужи вдоль стенок коллектора, а из-за поверхностного натяжения топлива мелкие капли могут объединяться в более крупные капли в воздушном потоке. Оба действия нежелательны, потому что они создают несоответствия в соотношении воздух-топливо . Турбулентность на впуске помогает разбивать капли топлива, улучшая степень распыления. Лучшее распыление обеспечивает более полное сгорание всего топлива и помогает снизить детонацию двигателя за счет увеличения фронта пламени. Для достижения этой турбулентности обычно оставляют поверхности впускных и впускных каналов в головке цилиндров шероховатыми и неотшлифованными.
При поступлении полезна только определенная степень турбулентности. Как только топливо достаточно распылено, дополнительная турбулентность вызывает ненужные падения давления и снижение производительности двигателя.
Преимущества и недостатки лучевых систем отопления
Положительные стороны
Основное достоинство лучевой схемы – удобство использования.
Специальное оборудование делает управление климатической сетью максимально эргономичным и удобным:
- Вы можете установить температуру каждого радиатора отопления в доме не отходя от коллекторного шкафа. Кроме того, при необходимости можно полностью перекрыть подачу воды к любому элементу системы без нарушения работоспособности всей сети отопления.
- Каждая пара труб соединяет коллектор только с одним радиатором. Поэтому можно использовать трубопроводы небольшого диаметра, которые легко замаскировать под напольным покрытием. Помимо всего прочего, это позволяет частично прогреть поверхность пола.
Трубы лучевой системы отопления укладываются до заливки пола
- Благодаря использованию специальных устройств (так называемых гидрострелок – коллекторов с большим диаметром) можно сформировать в доме несколько зон отопления с различной температурой теплоносителя .
В этом случае организуется короткий контур между подающим и обратным патрубками. Нагретая вода постоянно циркулирует в гидрострелке, а ее забор можно производить на различном расстоянии (от этого будет зависеть и температура).
Отрицательные стороны
Для полноты картины следует сказать и о минусах использования лучевой системы обогрева.
Именно из-за них, несмотря на все преимущества, она не сильно распространена:
- Сильно увеличенный расход подающих и отводящих труб. Чем просторнее дом и сложнее геометрия комнат, тем больше деталей понадобится. Кроме того, увеличивается трудоемкость монтажа, что не может не отразиться на сметной стоимости строительства.
Лучевая система обогрева требует использования огромного количества труб и коллекторов
- Необходимость скрытой установки. Если традиционная тройниковая система может монтироваться и вдоль стен, то огромное количество труб так вы разместить не сможете. Их обязательно нужно прятать под пол. Можно замуровывать и в стены, но в таком случае расход материала еще больше увеличиться.
- Отсутствие стыков. При конструировании трубопроводов нужно обязательно позаботиться о том, чтобы труба под полом не содержала ни одного стыка. В этом месте чаще всего происходят порывы, а стоимость устранения поломки будет далеко не низкой и очень трудоемкой.
- Если проект системы предусматривает несколько контуров с разной температурой теплоносителя, то каждый из них должен быть оборудован циркуляционным насосом.
Для чего нужен
При монтаже водонапорных систем существует правило: суммарный диаметр всех отводков не должен превышать диаметр подающей трубы. Применительно к отопительному оборудованию это правило выглядит так: если диаметр выходного штуцера котла равен 1 дюйму, то в системе допускается два контура с диаметром труб ½ дюйма. Для небольшого дома, отапливаемого только с помощью радиаторов, такая система будет работать эффективно.
На деле же, отопительных контуров в частном доме или коттедже бывает больше: теплые полы. отопление нескольких этажей, подсобных помещений, гаража. При их подключении через систему отводков, давление в каждом контуре будет недостаточным для эффективного нагрева радиаторов, и температура в доме будет не комфортной.
Поэтому разветвленные системы отопления выполняют коллекторными, этот прием позволяет произвести регулировку каждого контура отдельно и выставить нужную температуру в каждом помещении. Так, для гаража достаточно плюс 10-15ºС, а для детской необходима температура около плюс 23-25ºС. Кроме того, теплые полы не должны нагреваться более 35-37 градусов, иначе по ним будет неприятно ходить, а напольное покрытие может деформироваться. С помощью коллектора и запорной температуры можно решить и эту проблему.
Видео: применение коллекторной системы для отопления дома.
Коллекторные группы для систем отопления продаются в готовом виде, при этом они могут иметь разную комплектацию и количество отводов. Можно подобрать подходящий коллектор в сборе и установить его своими руками или с помощью специалистов.
Однако, большинство промышленных моделей универсальны и не всегда подходят под потребности того или иного дома. Их переделка или доработка может существенно увеличить затраты. Поэтому в большинстве случаев проще собрать его из отдельных блоков своими руками, учитывая особенности конкретной отопительной системы.
Коллекторная группа для системы отопления в сборе
Конструкция универсальной коллекторной группы показана на рисунке. Он состоит из двух блоков для прямого и обратного тока теплоносителя, оснащенных нужным количеством отводов. На подающем (прямом) коллекторе установлены расходомеры, на обратном расположены термоголовки для регулирования температуры обратной воды в каждом контуре. С их помощью можно установить требуемую скорость потока теплоносителя, которая будет определять температуру в отопительных радиаторах.
Коллекторный распределительный узел оснащен манометром, циркуляционным насосом и воздушными клапанами. Подающий и обратный коллекторы объединены в один блок кронштейнами, которые также служат для крепления блока к стене или шкафу. Цена такого блока — от 15 до 20 тысяч рублей. и если часть отводов будет не задействована, установка его будет явно нецелесообразной.
Правила монтажа готового блока показаны в видео.
Гребёнка — коллекторный узел
Самые дорогостоящие элементы в коллекторном распределительном блоке — расходомеры и термоголовки. Чтобы избежать переплаты за лишние элементы, можно купить коллекторный узел, так называемую «гребёнку», и установить необходимые регулирующие приборы своими руками только там, где это необходимо.
Гребёнка представляет собой латунные трубки диаметром 1 или ¾ дюйма с определенным количеством отводков с диаметром под трубы отопления ½ дюйма. Между собой они также соединены кронштейном. Отводки на обратном коллекторе оснащены заглушками, позволяющими установить термоголовки на все или на часть контуров.
С целью экономии коллектор для систем отопления можно собрать из отдельных элементов самостоятельно или полностью сделать своими руками.
Принцип действия и особенности формирования потока горючей смеси
Карбюратор или топливные форсунки распыляют топливо в приемную камеру коллекторе. За счет электростатических сил капли топлива немедленно разлетаются по камере и стремятся осесть на стенках коллектора или собраться в более крупные капли в воздухе. Оба действия нежелательны, поскольку приводят к образованию смеси неравномерной плотности. Чем лучше распыляется топливо, тем интенсивнее и полнее оно в дальнейшем сгорает в цилиндрах. Для достижения нужной турбулентности и давления в коллекторе, а следовательно, корректного распыления топлива, внутренние поверхности впускных каналов коллектора и головки блока цилиндров принято оставлять нешлифованными. Поверхность не должна быть слишком грубой, так как может возникнуть излишняя турбулентность, которая приведет к повышению давления и падению мощности двигателя.
Равнодлинный впускной коллектор, разработанный для гоночных автомобилей, стал стандартным атрибутом для двигателя современного легкового автомобиля
Впускной коллектор должен иметь строго определенную длину, емкость и форму. Все эти параметры рассчитываются при разработке силового агрегата. Впускной коллектор заканчивается воздушными каналами, которые направляют потоки воздуха к впускным клапанам мотора. В дизельных двигателях и системах с прямым впрыском, воздушный поток завихряется и направляется в цилиндр, в котором и происходит смешивание с топливом.
Зачем в машине нужен впускной коллектор
За впускным коллектором числится много задач, но основная — это подача воздуха (большое количество воздуха).
Если говорить на техническом языке, то он отвечает за:
- Подачу потока воздуха, участвующего в приготовлении топливной смеси с соблюдением соотношений, заданных инженерами;
- Равномерное распределение воздуха в цилиндры;
- Использование вакуума ВУТ для усиления усилий в тормозной системе;
- Работу системы вентиляции картерных газов (ВКГ);
- Контроль оборотов силового агрегата на холостом ходу за счет работы дросселя.
Для каждого силового агрегата разрабатывается свой впускной коллектор, геометрия которого будет оптимально подобрана под архитектуру двигателя.
Устройство и принцип работы
Чтобы впускной коллектор выполнял все возложенные на него задачи, он должен иметь строго рассчитанную геометрическую форму. Например, для того, чтобы поток внутри не замедлялся, коллектор проектируется без углов и прямых линий. Плавные изгибы, округлая форма способствуют более мощному воздушному потоку.
Устройство впускного коллектора
На входе во впускной коллектор находится карбюратор или дроссельная заслонка, если речь идет об инжекторном двигателе. Центральный канал разделяется на отдельные рукава – раннеры, которые подходят к цилиндрам, а точнее, к впускным клапанам.
Топливные форсунки размещаются возле впускных клапанов (в системе распределенного впрыска) или в центральном канале, если установлен моновпрыск.
По форме впускного канала различают одноплоскостные и двухплоскостные:
- Одноплоскостные – только с одним каналом для прохождения воздуха или топливно-воздушной смеси. Эти коллекторы пропускают за единицу времени большое количество воздуха, а значит, позволяют двигателю развить максимально возможную мощность на высоких оборотах;
- Двухплоскостные – те, в которых канал разделен на две части. Они дают возможность получить больше отдачи мощности на низких и средних оборотах двигателя.
Материалы. Изначально впускные коллекторы делались металлическими: из чугуна, стали, алюминия. Проблема таких конструкций не только в достаточно высокой цене, но и в значительном нагреве от цилиндров двигателя. Сегодня их в основном делают из специального термостойкого пластика, который обладает меньшей теплопроводностью, а значит, и меньше нагревает воздух внутри.
Принцип работы. Основной принцип работы коллектора – подача воздуха на фазе впуска. Инициатором движения воздуха является сам двигатель. Когда поршень опускается, в камере сгорания над ним создается зона низкого давления. На фазе впуска, когда клапан открыт, опускающийся поршень затягивает воздух, как хороший насос. Таким образом, от центрального канала воздух поступает в нужный раннер, а из него – в камеру сгорания. На видео-3д анимации, ниже, наглядно показан принцип работы впускного коллектора с вихревыми клапанами.
Если на автомобиле установлен карбюратор или центральная форсунка, при втягивании воздуха в раннер, поток топлива (или топливно-воздушной смеси) поступает в нужный цилиндр. Благодаря тому, что поток внутри коллектора турбулентный, топливо лучше перемешивается с воздухом и, следовательно, лучше сгорает. Турбулентный воздушный поток проектируется в коллекторе специально: он быстрее движется и лучше наполняет цилиндры.
В автомобилях с распределенным впрыском форсунки установлены в раннерах коллектора перед впускными клапанами. В этом случае по коллектору движется только воздух, который смешивается с распыленным топливом перед самым входом в цилиндр двигателя. Здесь скорость и структура воздушного потока также важны, поскольку для качественного приготовления топливно-воздушной смеси остается меньше времени и места.
Резонансные колебания. Чтобы усилить поток поступающего воздуха, внутренняя геометрия впускного коллектора рассчитывается так, чтобы образовался так называемый резонанс Гельмгольца. Примерная схема, как это работает:
- На фазе всасывания поршень мотора опускается вниз, создавая зону разрежения, и через открывшийся клапан в камеру сгорания на большой скорости заходит воздух;
- Однако объем раннера намного больше, чем объем цилиндра, поэтому весь воздух, который “взял разгон” в коллекторе, в камеру сгорания не попадает;
- Перед закрывшимся впускным клапаном создается зона повышенного давления, когда воздух по инерции продолжает движение вперед;
- Клапан всё еще закрыт, так что давление в раннере выравнивается, то есть происходит “откат”, а после него перед впускным клапаном опять образуется зона повышенного давления. Эти резонансные колебания воздуха зависят от формы и размера коллектора и рассчитываются под каждый двигатель отдельно.
Подсос воздуха во впускном коллекторе
Если в двигатель проникает воздух, который не «видят» расходомер воздуха или датчик абсолютного давления, будет формироваться слишком бедная смесь топлива и воздуха. Эта проблема вызвана подсосом воздуха во впускном тракте.
Основные причины:
- перегрев мотора (сказывается на состоянии прокладок);
- внешнее вмешательство;
- повреждение прокладок в результате неправильного использования карбклинера.
Очень часто трудности могут возникнуть в том случае, если повреждено уплотнение между впускным коллектором и головкой блока цилиндров, поскольку обнаружить такой подсос визуально непросто.
Поиск подсоса в коллекторе
На бензиновых моторах лишний воздух может оказаться в коллекторе из-за разгерметизации воздуховодов, износа уплотнительных резинок топливных форсунок или повреждений шлангов, ведущих к вакуумному усилителю тормозов.
Для того чтобы найти подсос воздуха используют разные способы:
- Перекрытие подачи воздуха. Необходимо отсоединить патрубок от корпуса фильтра и завести мотор. После этого прикройте рукой патрубок – если подсоса нет, двигатель заглохнет. Если двигатель продолжает работать, и вы слышите шипение, подсос точно есть.
- Пережим шлангов. Необходимо запустить мотор и через определенное время постараться услышать шипение. Если обнаружить место повреждения герметичности не удалось, надо по очереди пережимать шланги, которые соединены с ресивером. Если вы пережали и отпустили шланг, и это повлияло на работу силового агрегата, ищите проблему в данной зоне.
- Сжатый воздух. Систему впуска неработающего двигателя необходимо обработать мыльным раствором, после чего перекрыть подачу воздуха от фильтра и закачать воздух через одну из трубок.
- Опрыскивание горючей смесью. Для поиска места подсоса воздуха в двигатель применяются такие средства как бензин, WD-40 или очиститель карбюратора. С помощью выбранного средства необходимо опрыскивать все стыки. Когда жидкость окажется в месте подсоса, вы заметите изменения в работе двигателя (обороты должны вырасти или упасть). Для опрыскивания лучше использовать медицинский шприц.
Применяя этот метод, проверьте такие места: патрубок между клапанной крышкой и регулятором холостого хода, патрубок между датчиком массового расхода воздуха и РХХ, соединение впускного коллектора и дроссельной заслонки, соединение коллектора и головки блока цилиндров, уплотнения форсунок, все шланги в зонах крепления хомутов.
Дымогенератор. Далеко не у всех автомобилистов есть такое приспособление, в связи с чем обычно его используют в автомастерских. Вы можете купить готовое решение или изготовить его самостоятельно (инструкций и видео в Интернете хватает). Суть в том, что необходимо обеспечить подачу дыма через любой шланг во впускной коллектор. В проблемных местах дым будет просачиваться.
Ремонт и обслуживание впускных коллекторов
Современный впускной коллектор — деталь сложная. Случаются с ней и поломки. Рассмотрим типичные.
Нарушения герметичности
Это первое, чем «болеют» системы впуска, впрочем как и многие другие узлы автомобиля. Вибрации, перепады влажности, давления и температур сказываются на резиновых (паранитовых и др.) уплотнениях, которых в сложных системах впуска достаточно много. Возможно дополнительное попадание воздуха в смесь, так называемый «подсос».
Подсос воздуха во впускном коллекторе может значительно повлиять на динамические показатели двигателя в целом. После восстановления герметичности работа двигателя нормализуется.
Прокладки впускного и выпускного коллекторов ВАЗ 2106
Загрязнение впускного коллектора
Впускной тракт время от времени необходимо проверять на предмет налета на стенках. Подобная проблема может довольно сильно повлиять на динамику автомобиля. Особенно часто засоряется коллектор на двигателях с системой рециркуляции выхлопных газов. В таких случаях необходимо произвести разборку и чистку устройства специальным составом.
Отложения на стенках элементов впускных коллекторов
Деформации и механические повреждения корпуса
Для производства коллекторов широко используют пластик и алюминий, а эти материалы, как известно, могут деформироваться из-за воздействия высоких температур. Пластик со временем трескается и рассыхается. Алюминиевые коллекторы вследствие вибраций могут лопнуть.
Элементы с сильно нарушенной геометрией подлежат замене. Алюминиевые детали можно заварить аргонодуговой сваркой.
Повышенная температура воздуха в впускном коллекторе
Причинами подобной проблемы могут быть:
- длительная работа на холостом ходу в условиях высокой температуры воздуха (например в пробках);
- неполадки системы охлаждения и повышение общей температуры двигателя;
- нарушение вентиляции моторного отсека вследствие засорения радиатора;
- ошибочное показание датчика температуры во впускном коллекторе;
- ошибки в прошивке блока управления.
Решением является проверка узлов системы охлаждения и диагностика электронных систем.
Хлопки во впускном коллекторе
Во время воспламенения топлива в цилиндрах двигателя должны соблюдаться условия герметичности (оба клапана должны быть плотно закрыты). При условии воспламенения топлива с открытым или слегка приоткрытым впускным клапаном топливно-воздушная смесь может воспламеняться в самом коллекторе, в результате чего слышны характерные «хлопки». Такие поломки довольно опасны — они могут привести к значительным повреждениям.
Причинами неисправности могут быть:
- нарушение системы зажигания;
- неправильно настроенный газораспределительный механизм;
- нарушения плотности посадки впускных клапанов;
- проблемы с образованием топливовоздушной смеси.
В подобных случаях необходимо провести комплексную диагностику двигателя для выявления причин хлопков.
Рассмотрим процедуру замены прокладки впускного коллектора на примере двигателя Шевролет Авео 2017 г.
1. До начала работ обесточить бортсеть автомобиля, сняв отрицательную клемму аккумулятора.
2. Демонтировать рычаги стеклоочистителей (необходимо только в случае с конкретным двигателем).
3. Снять пластиковые фиксаторы защелки 1 и винты 2, после чего удалить решетку воздухозаборника 3.
4. Выполнить опорожнение системы охлаждения, выкрутив сливную пробку радиатора 4.
5. Снять воздухопровод воздушного фильтра 5, открутив винты хомутов 6.
6. Снять трубку принудительной вентиляции картера 7.
7. Отсоединить коммуникации дросселя 8-11, снять сам дроссель 12, открутив винты 13.
8. Отсоединить трубку усилителя тормозов 14.
9. Выкрутить винты 16,17 кронштейна коллектора, демонтировать кронштейн 15.
10. Снять направляющую топливной форсунки, отсоединить шланг охлаждения дросселя 19, открутить болты коллектора 18.
11. Отодвинуть коллектор 20 в сторону, аккуратно снять прокладку 21.
12. Очистить и обезжирить посадочные места для новой прокладки, установить ее.
13. Собрать узлы впускной системы в обратном порядке разборки.
Обращайте внимание на порядок и силу утяжки ремонтируемых узлов. Затягивайте резьбовые соединения постепенно в порядке от центра к краю детали, либо крест-накрест
Правильная работа впускного коллектора гарантирует длительную эксплуатацию двигателя. При минимальных знаниях и наборе необходимых инструментов текущее обслуживание или мелкий ремонт возможно произвести самостоятельно. Со сложными деталями и электроникой лучше обратиться в сервисный центр.
Форма и объемная эффективность
Одним из важнейших параметров впускного коллектора, определяющим эффективность, является его форма. Основное правило, которого придерживаются все инженеры, гласит, что впускной коллектор не должен иметь никаких угловатых форм, так как это спровоцирует перепады давления и, как следствие, худшее наполнение цилиндров воздухом или рабочей смесью. Поэтому, все коллекторы имеют сглаженные переходы между сегментами и округлые формы.
В подавляющем большинстве нынешних коллекторов применяют раннеры. Представляют они из себя отдельные трубы, расходящиеся от центрального входа коллектора на все имеющиеся впускные каналы в головке блока цилиндров. Их задача состоит в том, чтобы использовать такое явление, как резонанс Гельмгольца. Принцип работы конструкции выглядит следующим образом.
Изменение давления вследствие резонансных колебаний воздуха тем больше, чем меньше диаметр раннера. Когда поршень движется вниз, давление на выходе раннера уменьшается. Затем этот низкий импульс давления доходит до входа коллектора, где превращается в импульс высокого давления, который проходит в обратном направлении через раннер и клапан, после чего клапан закрывается.
Для достижения максимального эффекта от резонанса, впускной клапан должен открываться в строго определенный момент, иначе результат будет обратный. Добиться этого довольно сложно. Газораспределительный механизм является динамическим узлом, и режим его работы находится в самой прямой зависимости от частоты вращения коленвала. Импульсы синхронизируются статично, синхронизация зависит от длины раннеров. Частично проблема решается тем, что длина подбирается под определенный диапазон оборотов, на которых достигается наибольший крутящий момент. Другой вариант — применение систем изменения геометрии впускного коллектора и электронного управления ГРМ.