Электронные системы управления автомобилем

Классификация контроллеров управления мотором

На машины ВАЗ устанавливают следующие типы и виды контроллеров:

  • Январь 5 (Россия);
  • М 1.5.4 (Bosch);
  • МР 7.0 (Bosch).

Эти виды контроллеров не взаимозаменяемы. Есть система с нейтрализатором, есть без. Для системы без нейтрализатора подходит М 1.5.4, но он не подойдет для системы с нейтрализатором.

Контроллер МР 7.0 для системы ЕВРО-2 не подходит для автомобиля с двигателем ЕВРО-3. Контроллер МР 7.0 для системы ЕВРО-3 можно установить для авто ЕВРО-2 только после перепрошивки программного обеспечения контроллера.

Системы впрыска делятся на:

  • фазированные;
  • не фазированные.

В не фазированных системах впрыск топлива происходит или одновременно всеми форсунками, или парами.

В фазированных системах впрыск топлива происходит форсунками последовательно.

Почему ELM 327 не подключается к ЭБУ ВАЗ 2110

Итак, почему ELM327 не видит ЭБУ? Что делать, чтобы устройство могло подключиться и видеть блок? На сегодняшний день в продаже можно встретить множество различных адаптеров для тестирования транспортного средства. Если вы покупаете ELM327 Bluetooth, вероятнее всего, вы пытаетесь подключить некачественное устройств. Вернее, вы могли приобрести адаптер с устаревшей версией программного обеспечения.

Адаптер ELM 327

В устройствах ELM327 Bluetooth с устаревшей прошивкой применяется другой модуль Bluetooth, позволяющий взаимодействовать с двумя протоколами из имеющихся шести. Соответственно, со синхронизировать прибор со смартфоном можно, но когда вы попытаетесь соединить девайс с блоком управления, он вам сообщит о том, что нет связи с ЭБУ.

Итак, по каким причинам устройство отказывается подключаться к блоку:

  1. Сам адаптер некачественный.
  2. Проблемы могут быть как с прошивкой девайса, так и с его «железом». Если основная микросхема является неработоспособной, произвести диагностику работы двигателя, как и подключиться к ЭБУ, будет невозможно.
  3. Плохой кабель подключения. Возможно, кабель переломлен или сам по себе является неработоспособным.На девайсе установлено неправильная версия программного обеспечения, в результате чего добиться синхронизации не получится (автор видео о тестировании устройства — Rus Radarov)

В том случае, если вы являетесь владельцем девайса с правильной версией прошивки 1.5, где присутствуют все шесть протоколов из шести, но при этом адаптер не подключается к ЭБУ, выход есть. Подключаться к блоку можно, используя строки инициализации, позволяющие устройству подстроиться под команды блока управления мотором машины. В частности, речь идет о строках инициализации к утилитам для диагностики ХобДрайв и Torque к транспортным средствам, которые используют нестандартные протоколы подключения.

Видео: ELM 327 не подключается к ЭБУ Ваз

https://youtube.com/watch?v=MwVfsGSOZVs

Схема электрических соединений ЭСУД Россия-83 Bosch 1.5.4, Январь 5.1.1 ВАЗ-21102, 2111, 21122 с двигателем 2111

2- свечи зажигания;

3- модуль зажигания;

4- колодка диагностики;

6- колодка, присоединяемая к жгуту панели приборов;

8- предохранитель главного реле;

9- реле электровентилятора;

10- предохранитель цепи питания контроллера;

11- реле электробензонасоса;

12- предохранитель цепи питания электробензонасоса;

13- датчик массового расхода воздуха;

14- датчик положения дроссельной заслонки;

15- датчик температуры охлаждающей жидкости;

16- регулятор холостого хода;

17- датчик детонации;

18- датчик положения коленчатого вала;

19- блок управления АПС;

20- индикатор состояния АПС;

21- датчик скорости;

22- электробензонасос с датчиком уровня топлива;

23- датчик контрольной лампы давления масла;

24- датчик указателя температуры охлаждающей жидкости;

25- датчик уровня масла;

26- колодка, присоединяемая к жгуту системы зажигания;

27- комбинация приборов;

28- монтажный блок;

29- электровентилятор системы охлаждения;

30- выключатель зажигания;

А — колодка присоединяемая к жгуту салонной группы АБС; В — колодка, присоединяемая к жгуту кондиционера; С — колодка, присоединяемая к колодке R жгута переднего; D — провод, присоединяемый к выключателю зажигания (лампа подсветки); Е — колодка, присоединяемая к голубо-белым проводам, отсоединённым от выключателя зажигания; F — к клемме «+» аккумуляторной батареи; G1,G2 — точки заземления; L — контакты колодки к маршрутному компьютеру; М — контакт колодки к блоку бортовой системы контроля; N — контакты колодки жгута панели приборов и жгута переднего; R — колодка, присоединяемая к колодке С жгута системы зажигания; Z — к клемме «В+» генератора;

Назначение контактов ЭБУ Bosch ME17.9.7

В таблице приведено назначение контактов контроллеров 21126 – 1411020-40, 11194 – 1411020-20Синим цветом выделено отличие в подключении для контроллеров 21214 – 1411010-50Колодка

 № Назначение вывода Назначение вывода
Секция X2 Секция X1
1  Вход. Датчик положения коленвала B 1  not connected
2  Вход. Датчик кислорода 2 2  not connected
3  Вход. Датчик положения др. заслонки 1 3  Масса аналоговых датчиков
4  Масса ДК 1 4  Масса аналоговых датчиков
5  Масса ДТОЖ 5  Масса датчика педали акселератора 1
6  Масса ДК 2 6  Масса датчика педали акселератора 2
7  Масса датчиков положения др. заслонки 7  Вход датчика давления хладагента (2 уровень) (не используется)
8 Масса датчика расхода воздуха и темп. воздуха 8  not connected
9  not connected 9  not connected
10  not connected 10  not connected
11  not connected 11  Датчик педали акселератора 2
12  not connected 12  not connected
13  Вход. Датчик положения коленвала А 13  not connected
14  not connected 14  not connected
15  Вход. ДТОЖ 15  Выход. Главное реле
16  not connected 16  Вход. Клемма 15 замка зажигания
17  not connected 17  not connected
18  not connected 18  not connected
19  not connected 19 Вход. Датчик давления хладагента (1 и 3) уровень (не используется)
20  Вход. Датчик положения др. заслонки 2 20  not connected
21  not connected 21  Вход. Датчик педали акселератора 1
22  not connected 22  Вход. Диагностика вентиляторов (не используется)
23  Питание (3,3V) датчиков положения др. заслонки 23  not connected
24  not connected 24  not connected
25  not connected 25  not connected
26  not connected 26  Питание (3.3V) датчика педали акселератора 2
27  Вход. Датчик температуры впускного воздуха 27  К‑Line
28  not connected 28  Выход. Тахометр
29  not connected 29  Выход. Сигнал расхода топлива
30  Вход. Датчик кислорода 1 30  not connected
31  Вход. Датчик положения распредвала 31  Выход. Реле кондиционера (не используется)
32  Вход. Датчик скорости автомобиля 32  CAN‑H
33  Вход. Датчик массового расхода воздуха Вход. Датчик (частотный) расхода воздуха 33  not connected
34  not connected 34  Вход. Запрос на включение кондиционера (не используется)
35  Выход. Клапан продувки адсорбера 35  Вход. Выключатель 1 педали тормоза
36  not connected 36  Вход. Выключатель педали сцепления
37  Вход. Датчик детонации – клемма 1 «+» 37 Питание (5V) датчика расхода воздуха
38  Вход. Датчик детонации – клемма 2 «-» 38  Питаниа (3.3V) датчика положения педали акселератора 1
39  Выход. Нагреватель ДК 2 39  not connected
40  not connected 40  Выход. Контрольная лампа MIL
41  not connected 41  Выход. Реле вентилятора 1
42  Выход. Форсунка 2 цилиндра 42  Выход. Реле топливного насоса
43  Выход. Форсунка 3 цилиндра 43  not connected
44  Выход. Форсунка 1 цилиндра 44  CAN‑L
45  Выход. Форсунка 4 цилиндра 45  not connected
46  Выход. Нагреватель ДК 1 46  not connected
47  Масса датчиков Масса электроники 47  Выключатель 2 педали тормоза
48  not connected 48  not connected
49  not connected 49  not connected
50  Масса выходных каскадов 50  not connected
51  Выход. Привод дроссельной заслонки 1 «+» 51  Выход. Реле стартера
52  Выход. Привод дроссельной заслонки 2 «-» 52  Выход. Реле вентилятора 2
53  Катушка зажигания 2 цилиндра (не используется) 53  Масса выходных каскадов
54  Катушка зажигания 3 цилиндра Катушка зажигания 2,3 цилиндров 54  Масса выходных каскадов
55  Катушка зажигания 4 цилиндра (не используется) 55  Выход +АБ после Главного Реле
56  Катушка зажигания 1 цилиндра Катушка зажигания 1,4 цилиндров 56  Выход +АБ после Главного Реле

Топливный насос электрического типа

Бензонасос для ВАЗ 2110 инжектор электрического типа устанавливается в автомобилях с регулируемой системой впрыска. Электробензонасос «десятки» расположен в системе топливопровода в бензобаке транспортного средства. Такая дислокация элемента сильно снижает возможность потерь топлива из-за применения схемы без участия трубопроводов, которые работают на всасывание горючего.

Этот элемент системы подачи горючего включает:

  • насос, корпусная часть которого изготовлена из металла;
  • датчик уровня горючего;
  • топливозаборный компонент;
  • фильтр-сетку;
  • клапаны обратного и редукционного типов.

Клапан обратного принципа действия стопорит комплекс раздачи горючего при остановке силовой установки. Элемент редукционного типа контролирует давление, выполняя функцию перепускного клапана.

Конструкции электробензонасосов бывают:

  • роликового типа;
  • шестеренчатого типа;
  • центробежного типа.

Роликовый насос электрического типа засасывает топливо и прогоняет его за счет функционала роторного элемента и передвижения роликов особенного назначения. Шестеренчатый электронасос засасывает топливо и прогоняет его за счет и нагнетается за счет перемещения шестерни внутреннего типа относительно статорного элемента, играющего роль наружной шестерни. При движении ротора вращательного типа боковые элементы зубца создают в своих сегментах камеру, которая меняет степень разреженности, при помощи которой создается эффект всасывания и поступления горючего.

В то же время топливный насос центробежного типа монтируется непосредственно в топливопроводе. Такие элементы дают возможность обеспечить ровную подачу топлива и работают практически бесшумно. Они имеют одну существенную особенность — лимит по параметрам давления и функционалу.

Датчики детонации.

Датчик детонации служит для контроля
степени детонации при работе бензинового
двигателя внутреннего сгорания. Датчик
устанавливается на блоке цилиндров
двигателя. Он является важным компонентом
системы
управления двигателем, т.к. позволяет
реализовать максимальную мощность
двигателя и обеспечить топливную
экономичность.

Принцип действия датчика детонации
основан на пьезоэффекте. В конструкцию
датчика включена пьезоэлектрическая
пластина, в которой при возникновении
детонации на концах возникает напряжение.
Чем больше амплитуда и частота колебаний,
тем выше напряжение. Когда напряжение
на выходе датчика превышает заданный
уровень, соотвествующий определенной
степени детонации, электронный блок
управления корректирует характеристику
работы системы
зажиганияв сторону уменьшения угла
опережения зажигания. Таким образом,
достигается оптимальная характеристика
работы системы для конкретных условий
эксплуатации.

При неисправности датчика детонации
(отсутствии сигнала) на панели приборов
загорается соответствующая сигнальная
лампа, двигатель при этом продолжает
работать.

Вышедший из строя датчик детонации
влияет на динамику и экономичность
двигателя
. Принцип работы электронного
блока управления таков, что при
возникновении неисправности датчика
он устанавливает заведомо позднее
зажигание в целях безопасности, чтобы
исключить вероятность разрушения
мотора. В результате силовой агрегат
работает, но начинает потреблять гораздо
больше топлива, и ухудшается динамика
машины. Второе особенно заметно при
повышенных нагрузках.

Основные симптомы, указывающие на то,
что данное устройство вышло из строя:

падение мощности;

ухудшение разгонных характеристик и
резкое увеличение «аппетита» двигателя;

дымный выхлоп.

Проверка датчика детонации заключается
в том, что датчик с присоединенными
щупами зажимается в ладони, которой
затем нужно несильно постучать по
какой-нибудь поверхности. При ударах
мультиметр должен фиксировать появление
напряжения (обычно оно составляет
порядка 30-40 мВ). Принцип прост: чем сильнее
удар, тем большая разность потенциалов
возникнет между электродами. Поскольку
напряжение невелико, не каждый прибор
способен его замерить, поэтому
предварительно нужно убедиться, что
имеющееся под рукой измерительное
устройство рассчитано на подобные
замеры. Полное отсутствие разности
потенциалов свидетельствует о том, что
датчик детонации неисправен.

Наиболее распространённые неисправности ЭСУД

Оговоримся сразу, статистика приводится средняя и характерная для электронных систем управления всех автомобилей. По мере убывания частоты возникновения неисправности список выглядит так:

  1. Предохранитель (наиболее простое и дешёвое препятствие, которое легко заменить или просто зачистить контакты);
  2. Термостат электронный (выходит из строя чаще всего и является причиной многих других дефектов);
  3. Свечи зажигания (а также повреждения в высоковольтной подводке) сбивают показания датчиков;
  4. Датчики: — холла; — электронной заслонки дросселя; — кислорода; — давления и его аварийного сброса в системе турбонаддува;
  5. Электроклапаны: — управления системой турбонаддува; — насоса охлаждения наддувной системы; — давления в турбосистеме; — в газораспределительной системе;
  6. Катушка зажигания;
  7. Форсунки (у инжекторных и дизельных автомобилей).

Признаки выхода из строя электронного блока управления

По статистике часто проблемы в работе электронного блока управления обусловлены ошибками в эксплуатации устройств.

Причины и симптомы неисправностей

Причины, которые могут привести к выходу из строя ЭБУ:

  • прикуривание двигателя машины от авто с заведенным силовым агрегатом;
  • ошибки, допущенные при подключении АКБ, в частности, речь идет о несоответствии полярностей клемм;
  • монтаж противоугонной системы неквалифицированным специалистом, который привел к ошибкам установки;
  • демонтаж зажимов батареи при заведенном двигателе;
  • активация стартерного устройства с отключенной силовой шиной;
  • негативное воздействие влаги на ЭБУ, если жидкость попала внутрь устройства, на саму плату;
  • повреждение электроцепи, к которой подключен электронный модуль, либо замыкание на участке электролинии;
  • случайное подключение электрода при выполнении сварочных работ на электроцепь или контроллеры, установленные на авто;
  • механические повреждения устройства, которые могут произойти в случае аварии;
  • ошибки, допущенные при перепрошивке девайса;
  • неисправности в работе высоковольтной составляющей системы зажигания — распределительных устройств, кабелей, катушек и т. д.

Признаки, по которым можно определить неисправность в работе блока:

  • электронный модуль перестал реагировать на сигналы, подающиеся от контроллеров температуры, регулятора кислорода и положения дросселя;
  • двигатель автомобиля перестал запускаться либо появились проблемы в его управлении;
  • при функционировании силового агрегата периодически происходят блокировки систем сцепления, дверных замков и т. д.;
  • на ЭБУ перестали подаваться сигналы от исполнительных узлов — датчиков холостых оборотов, системы зажигания, топливного насоса, системы управления форсунками и т. д.;
  • различные неполадки механического плана — вышедшие из строя платы электронных приборов, перегоревшие электропроводники и т. д.;
  • троение мотора машины;
  • на электронные устройства и оборудование перестало подаваться питание;
  • на экране бортового компьютера или приборной панели постоянно выводятся ошибки.

Канал Гараж продемонстрировал процедуру компьютерной диагностики модуля и сброса ошибок в гаражных условиях.

Устранение неполадок

Каждый модуль оборудуется системой проверки, что позволяет диагностировать степень неисправности блока в гаражных условиях. Чтобы выполнить проверку, автовладельцу надо подключиться к модулю посредством компьютера, на который заранее устанавливается диагностическое ПО. Допускается применение тестеров и сканеров для проверки. Информация, которая получается в процессе диагностики, должна быть сравнена с нормированными параметрами.

Все причины появления неполадок в ЭБУ делятся на два типа — неисправности в функционировании прошивки либо нерабочие проводники.

Восстановить работу ПО можно с помощью перепрошивки модуля, выполнить эту задачу смогут только мастера с опытом работы. Проверка электрических показаний может быть сделана в гаражных условиях посредством использования мультиметра. Чтобы найти пробой в электроцепи, автовладельцу надо разобраться со схемой работы ЭБУ, она будет разной в зависимости от модели установленного модуля.

После определения места установки проводников, кабеля питания и резисторных элементов выполняется прозвон электроцепи. Проверке подлежит участок, где были выявлены ошибки показаний ЭБУ. Если проверка не дала результатов, осуществляется прозвон всех электроцепей на схеме прибора. Некоторые потребители после обнаружения ошибки отключают клемму аккумулятора, полагая, что это позволит удалить код ошибки из памяти.

Избавиться от неполадки в ЭБУ нельзя методом отключения АКБ, так из памяти устройства удалится только код ошибки, сама неисправность останется.

Ремонт электронного модуля выполняется посредством проведения следующих действий:

  1. Выявление места повреждения в функционировании модуля.
  2. Повторное измерение параметров сопротивления.
  3. Поиск точки крепления электропроводника.
  4. Подключение кабеля с нужным сопротивлением параллельным образом посредством паяльника. Старый провод можно не отключать.

Если это не помогло избавиться от ошибок в работе модуля, надо обратиться за помощью к мастерам. Качество проведения ремонта блока влияет на его ресурс эксплуатации, а также безопасность машины в целом.

Диагностика датчиков

Рассмотрим на примере отечественного автомобиля ВАЗ, на котором ДМРВ является важнейшим элементом учета всех характеристик, которые необходимо учитывать для правильного впрыска топлива. Как вы уже знаете, все данные, которые поступают от этого прибора, влияют на работу всего двигателя. Крайне важна прошивка ЭБУ, а если точнее, то это топливная карта, в которой заложено несколько важных параметров. В частности, количество воздуха и бензина, подаваемое в рампу для смесеобразования, частота вращения коленвала и нагрузка на мотор. Перед тем как проводить замену этого устройства, необходимо провести небольшую диагностику. Первоначальную проверку можно сделать при помощи обычного мультиметра. С его помощью необходимо проверить значение напряжения, которое присутствует у датчика на выводах.

Для этого отключаете от него штекер. Устанавливаете мультиметр в положении, в котором производится замер напряжения. Минусовой провод соединяется с массой ДВС. При включенном зажигании производится замер напряжения на пятом выводе в штекере, идущем к датчику. Ориентир нужно держать на значение около 12 Вольт. Если имеется сильное отклонение, то имеется неисправность ЭБУ двигателя либо же нарушена проводка к датчику. На четвертом выводе должно быть около 5 Вольт. Если имеется существенное отклонение от этого значения, то причиной этого является также нарушение электропроводки, либо же она кроется в самом блоке управления.

Устройство ЭСУД

Поскольку электронная система управления двигателем это, по сути, компьютер, технически она устроена примерно так же, как стандартный ПК. Система помнит базовые установки, заложенные производителем и следит за соблюдением этих параметров в процессе работы двигателя.

На техническом уровне блок состоит из:

  • Постоянного запоминающего устройства (ППЗУ). Это память, которая содержит базовый алгоритм управления мотором. Его можно изменить вручную. При отключении двигателя установки не удаляются.
  • Оперативное запоминающее устройство (ОЗУ). Память, которая обрабатывает оперативные данные, поступающие от систем: соответствие заданным в ППЗУ параметрам, ошибки и т.п. Устройство имеет дополнительный источник питания – от аккумулятора, поэтому оно может сохранять данные, даже если прерывать питание.
  • Электрически программируемое запоминающее устройство (ЭРПЗУ). Память, где хранятся коды противоугонной системы. Также отвечает за функционирование иммобилайзера.

Диагностика бортового компьютера

ЭСУД — тоже компьютер. Он функционирует на основе анализа данных, получаемых со всех электронных датчиков. Каждой неисправности при этом присваивается свой код.

Как это происходит, демонстрирует данная я схема:

Для считывания данных с контроллера может быть использован сканер, который подключается к специальному разъёму OBD-2 в салоне автомобиля или к аналогичному разъёму под капотом.

Сканер «снимает» все коды ЭБУ. Затем они анализируются при помощи специальной программы, предназначенной для исследуемой модели автомашины.

Метод анализа — сравнение существующих данных с номиналом и выявление причины какого-либо сбоя системы и оптимальные способы устранения неполадок.

  • наличие электропитания в блоке;
  • цельность электропроводки;
  • исправность разъёмов, предохранителей, а также все контакты (они не должны быть окисленными);
  • связь контроллера с датчиками.

Если с датчиками связь отсутствует даже при нормальном функционировании всего остального, ЭБУ не исправен и нуждается в ремонте или замене.

2 Как произвести диагностику ЭБУ в домашних условиях

Многие водители считают, что заниматься проверкой работы блока управления двигателем должны только профессионалы. На самом деле, практически каждые “мозги” еще на заводе оснащаются встроенной системой самодиагностики. С ее помощью выявить какие-либо неисправности своими руками не составит труда даже неопытному водителю.

Блок управления двигателем представляет собой мини-компьютер, который должен выполнять специализированные задачи в реальном времени. Последние можно разделить на 3 категории:

  1. обработка сигналов, поступающих от датчиков;
  2. расчет воздействий для управления системами автомобиля;
  3. регулировка работы исполнительных механизмов.

Чтобы начать проверку состояния блока управления двигателем, нам понадобится подключиться к нему. Сделать это можно с помощью специального тестера или ноутбука. На последнем заранее должна быть установлена программа, предназначенная для чтения диагностических данных. Современные авто оснащаются различными моделями ЭБУ. Мы же рассмотрим выполнение диагностики блока управления двигателем на примере модели Bosch M 7.9.7. Именно такие “мозги” устанавливаются на последних моделях автомобилей ВАЗ и многих иномарках.

Диагностику своими руками мы будем проводить с помощью бесплатной программы KWP-D. Помимо утилиты, нам понадобится адаптер, поддерживающий протокол KWP2000. Начинаем диагностику с подключения адаптера. Один его конец вставляем в порт ЭБУ, а второй – в ноутбук. После этого включаем зажигание автомобиля и запускаем программу. На дисплее ноутбука должно появиться сообщение о том, что операция по проверке наличия ошибок в работе ЭБУ успешно началась. После этого мы увидим таблицу с наиболее важными параметрами работы машины.

Не стоит игнорировать и другие разделы таблицы. Информация в них не менее важная. Так, параметр UACC отвечает за состояние аккумулятора. Нормальные показатели для этого раздела находятся в пределах 14–14,5 В. Если напряжение вашего аккумулятора меньше – стоит тщательно проверить электрические цепи. Другой важный параметр – THR, который отвечает за положение дроссельной заслонки. При нормальной работе на холостом ходу датчик положения дросселя будет показывать 0 %. В противном случае стоит обратиться к специалисту.

Еще один важный показатель, который интересует всех водителей – это параметр QT, который отвечает за количество расхода топлива. На холостом ходу в разделе должны находиться цифры 0,6–0,9 л/час. Для более точной диагностики понадобится проверить напряжение в свечах зажигания автомобиля. Проверяя все эти показатели, водители очень часто игнорируют состояние коленвала при вращении, за который отвечает раздел LUMS_W. Если цифры в нем больше 4 об/с – это признак неравномерного воспламенения в цилиндрах. Также стоит проверить высоковольтные провода и свечи.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector