Расчет скорости шкивов ременной передачи калькулятор. расчёт клиноременной передачи
Содержание:
- передаточные числа рядов и главных пар
- Тип редуктора
- Определяем передаточное отношение редуктора вручную.
- Крутящий момент редуктора
- Передаточное число [I]
- Расчет передаточного числа редуктора онлайн калькулятор
- Определение передаточного числа главной передачи.
- Выбираем тип редуктора
- Передаточное число [I]
- Сообщений 1 страница 12 из 12
- Калькулятор передаточных чисел кпп
- Расчет цепной передачи
- Передаточное число [I]
- Крутящий момент редуктора
- Крутящий момент редуктора
- Выбор по основным характеристикам
- Крутящий момент редуктора
- Передаточное отношение зубчатой передачи
- Ремонт и Доработка» на DRIVE2
передаточные числа рядов и главных пар
Калькулятор КПП позволяет рассчитать зависимость скорости автомобиля от рабочих оборотов двигателя на каждой передаче с учетом ряда параметров: передаточное отношение ряда в КПП, главной пары (редуктора), размера колес. Расчет ведется для двух разных конфигураций КПП для проведения сравнительного анализа. Это позволяет правильно подобрать тюнинговый ряд и ГП для коробки переключения передач.Результаты расчета КПП выводятся в табличном и графическом виде. Графики позволяют произвести визуальный анализ, оценить «длину» каждой передачи, и «разрыв» между ними (на сколько падают обороты двигателя при переключении на повышенную передачу)
Заполните графы параметров колеса: ширину и высоту профиля покрышки (ищите маркировку на боковине покрышки) и диаметр колесного диска
Обратите внимание: маркировка R на покрышке означает ее конструкцию – радиальная, например, R14 — покрышка радиальной конструкции диаметром 14 дюймов.Введите передаточное число главной пары и каждой передачи в соответствующие графы калькулятора КПП (разделитель дробной части – точка). Если шестой передачи нет, вводите ноль.Нажмите кнопку «Рассчитать КПП».
Ряды КПП переднеприводных ВАЗ (конструктив 2108)
2 передача
3 передача
4 передача
5 передача
6 передача
стандартный
3,636
1,950
1,357
0,941
0,784
–
5 ряд
2,923
1,810
1,276
0,969
0,784
6 ряд
2,923
1,810
1,276
1,063
0,941
7 ряд
2,923
2,050
1,555
1,310
1,129
8 ряд
3,415
2,105
1,357
0,969
0,784
11 ряд
3,636
2,222
1,538
1,167
0,880
12 ряд
3,170
1,950
1,357
1,031
0,784
15 ряд
3,170
1,810
1,276
0,941
0,730
18 ряд
3,170
2,105
1,480
1,129
0,880
20 ряд
3,170
1,950
1,276
0,941
0,730
102 ряд
3,170
1,950
1,357
0,941
0,730
103 ряд
2,923
1,950
1,357
0,941
0,692
104 ряд
2,923
1,950
1,357
1,031
0,692
111 ряд
3,170
2,222
1,538
1,167
0,880
200 ряд
2,923
2,222
1,76
1,39
1,167
www.kartuning.ru
Тип редуктора
Наличие кинематической схемы привода упростит выбор типа редуктора. Конструктивно редукторы подразделяются на следующие виды:
Червячный одноступенчатый со скрещенным расположением входного/выходного вала (угол 90 градусов).
Червячный двухступенчатый с перпендикулярным или параллельным расположением осей входного/выходного вала. Соответственно, оси могут располагаться в разных горизонтальных и вертикальных плоскостях.
Цилиндрический горизонтальный с параллельным расположением входного/выходного валов. Оси находятся в одной горизонтальной плоскости.
Цилиндрический соосный под любым углом. Оси валов располагаются в одной плоскости.
В коническо-цилиндрическом редукторе оси входного/выходного валов пересекаются под углом 90 градусов.
ВАЖНО! Расположение выходного вала в пространстве имеет определяющее значение для ряда промышленных применений
- Конструкция червячных редукторов позволяет использовать их при любом положении выходного вала.
- Применение цилиндрических и конических моделей чаще возможно в горизонтальной плоскости. При одинаковых с червячными редукторами массо-габаритных характеристиках эксплуатация цилиндрических агрегатов экономически целесообразней за счет увеличения передаваемой нагрузки в 1,5-2 раза и высокого КПД.
Таблица 1. Классификация редукторов по числу ступеней и типу передачи
Тип редуктора | Число ступеней | Тип передачи | Расположение осей |
---|---|---|---|
Цилиндрический | 1 | Одна или несколько цилиндрических | Параллельное |
2 | Параллельное/соосное | ||
3 | |||
4 | Параллельное | ||
Конический | 1 | Коническая | Пересекающееся |
Коническо-цилиндрический | 2 | Коническая Цилиндрическая (одна или несколько) | Пересекающееся/скрещивающееся |
3 | |||
4 | |||
Червячный | 1 | Червячная (одна или две) | Скрещивающееся |
1 | Параллельное | ||
Цилиндрическо-червячный или червячно-цилиндрический | 2 | Цилиндрическая (одна или две) Червячная (одна) | Скрещивающееся |
3 | |||
Планетарный | 1 | Два центральных зубчатых колеса и сателлиты (для каждой ступени) | Соосное |
2 | |||
3 | |||
Цилиндрическо-планетарный | 2 | Цилиндрическая (одна или несколько) Планетарная (одна или несколько) | Параллельное/соосное |
3 | |||
4 | |||
Коническо-планетарный | 2 | Коническая (одна) Планетарная (одна или несколько) | Пересекающееся |
3 | |||
4 | |||
Червячно-планетарный | 2 | Червячная (одна) Планетарная (одна или несколько) | Скрещивающееся |
3 | |||
4 | |||
Волновой | 1 | Волновая (одна) | Соосное |
Определяем передаточное отношение редуктора вручную.
Очень часто клиенты при обращении в нашу организацию, говорят, что вышедший из строя редуктор не имеет шильда и они не имеют понятия, как узнать передаточное число редуктора. Данному вопросу и будет посвящён этот раздел сайта.
Итак, расчёт передаточного числа цилиндрического редуктора состоит из следующих операций;
- считаем количество зубьев каждой шестерни и вала-шестерни всех ступеней редуктора;
- делим количество зубьев шестерни на количество зубьев вала-шестерни, работающего с ней в паре;
- производим эту операцию для каждой ступени — получаем передаточное число (отношение) каждой ступени;
- перемножаем полученные числа друг на друга — получаем общее передаточное число редуктора
Расчёт передаточного числа червячного редуктора состоит из следующих этапов:
- считаем количество зубьев на червячном колесе
- определяем количество заходов червяка (например, обычное сверло имеет два захода)
- делим количество зубьев колеса на количество заходов червяка и получаем передаточное отношение червячного редуктора
- в случае, если редуктор двухступенчатый, делаем это для каждой ступени и умножаем друг на друга
Как видим, всё достаточно просто. Если же редуктор сохранил хоть какую-то работоспособность, то достаточно вручную прокрутить входной вал редуктора до одного полного оборота выходного вала. Количество оборотов входного вала и будет являться передаточным числом редуктора. Подобным образом возможно определить передаточное отношение большинства редукторов, представленных в нашем каталоге.
В данной статье содержится подробная информация о выборе и расчете мотор-редуктора. Надеемся, предлагаемые сведения будут вам полезны.
При выборе конкретной модели мотор-редуктора учитываются следующие технические характеристики:
- тип редуктора;
- мощность;
- обороты на выходе;
- передаточное число редуктора;
- конструкция входного и выходного валов;
- тип монтажа;
- дополнительные функции.
Крутящий момент редуктора
Крутящий момент на выходном валу – вращающий момент на выходном валу. Учитывается номинальная мощность , коэффициент безопасности , расчетная продолжительность эксплуатации (10 тысяч часов), КПД редуктора.
Номинальный крутящий момент – максимальный крутящий момент, обеспечивающий безопасную передачу. Его значение рассчитывается с учетом коэффициента безопасности – 1 и продолжительность эксплуатации – 10 тысяч часов.
Максимальный вращающий момент – предельный крутящий момент, выдерживаемый редуктором при постоянной или изменяющейся нагрузках, эксплуатации с частыми пусками/остановками. Данное значение можно трактовать как моментальную пиковую нагрузку в режиме работы оборудования.
Необходимый крутящий момент – крутящий момент, удовлетворяющим критериям заказчика. Его значение меньшее или равное номинальному крутящему моменту.
Расчетный крутящий момент – значение, необходимое для выбора редуктора. Расчетное значение вычисляется по следующей формуле:
Mc2 = Mr2 x Sf ≤ Mn2
где Mr2 – необходимый крутящий момент; Sf – сервис-фактор (эксплуатационный коэффициент); Mn2 – номинальный крутящий момент.
Передаточное число [I]
Передаточное число редуктора рассчитывается по формуле:
I = N1/N2
где N1 – скорость вращения вала (количество об/мин) на входе; N2 – скорость вращения вала (количество об/мин) на выходе.
Полученное при расчетах значение округляется до значения, указанного в технических характеристиках конкретного типа редукторов.
Таблица 2. Диапазон передаточных чисел для разных типов редукторов
Тип редуктора | Передаточные числа |
Червячный одноступенчатый | 8-80 |
Червячный двухступенчатый | 25-10000 |
Цилиндрический одноступенчатый | 2-6,3 |
Цилиндрический двухступенчатый | 8-50 |
Цилиндрический трехступенчатый | 31,5-200 |
Коническо-цилиндрический одноступенчатый | 6,3-28 |
Коническо-цилиндрический двухступенчатый | 28-180 |
ВАЖНО! Скорость вращения вала электродвигателя и, соответственно, входного вала редуктора не может превышать 1500 об/мин. Правило действует для любых типов редукторов, кроме цилиндрических соосных со скоростью вращения до 3000 об/мин
Этот технический параметр производители указывают в сводных характеристиках электрических двигателей.
Расчет передаточного числа редуктора онлайн калькулятор
Калькулятор КПП позволяет рассчитать зависимость скорости автомобиля от рабочих оборотов двигателя на каждой передаче с учетом ряда параметров: передаточное отношение ряда в КПП, главной пары (редуктора), размера колес. Расчет ведется для двух разных конфигураций КПП для проведения сравнительного анализа. Это позволяет правильно подобрать тюнинговый ряд и ГП для коробки переключения передач.
Результаты расчета КПП выводятся в табличном и графическом виде. Графики позволяют произвести визуальный анализ, оценить «длину» каждой передачи, и «разрыв» между ними (на сколько падают обороты двигателя при переключении на повышенную передачу)
Заполните графы параметров колеса: ширину и высоту профиля покрышки (ищите маркировку на боковине покрышки) и диаметр колесного диска
Обратите внимание: маркировка R на покрышке означает ее конструкцию – радиальная, например, R14 — покрышка радиальной конструкции диаметром 14 дюймов. Введите передаточное число главной пары и каждой передачи в соответствующие графы калькулятора КПП (разделитель дробной части – точка)
Если шестой передачи нет, вводите ноль. Нажмите кнопку «Рассчитать КПП».
Данный тюнинг-калькулятор поможет Вам просчитать изменения в поведении и характеристиках вашего внедорожника при замене колес, двигателя, коробки передач и т.д.
— Введите характеристики оборудования до и после тюнинга Вам достаточно ввести характеристики оборудования до и после тюнинга.
* Максимальная скорость вычисляется из передаточных чисел трансмиссии, оборотов двигателя и размеров шин. Но двигатель может оказатся недостаточно мощным и реальная максимальная скорость будет меньше, чем подсчитанная. ** Вычисление тяги и максимального угла подъема происходит без учета сил трения и сцепления колес с землей и могут быть меньше, чем подсчитанные. *** Если на автомобиль установлены редукторные мосты, то показатель КПД следует уменьшить до 82%.
В данной статье содержится подробная информация о выборе и расчете мотор-редуктора. Надеемся, предлагаемые сведения будут вам полезны.
При выборе конкретной модели мотор-редуктора учитываются следующие технические характеристики:
- тип редуктора;
- мощность;
- обороты на выходе;
- передаточное число редуктора;
- конструкция входного и выходного валов;
- тип монтажа;
- дополнительные функции.
Определение передаточного числа главной передачи.
Передаточное число главной передачи находят исходя из максимальной скорости автомобиля на высшей передаче, заданной техническими условиями на проектируемый автомобиль.
Значение передаточного числа главной передачи определяют по формуле
Ur=3,6(wmaxrk)/VmaxUkUд
где vmax — максимальная скорость автомобиля, км/ч; wmах — максимальная угловая скорость коленчатого вала, рад/с; rk — радиус колеса, м; Uk — передаточное число коробки передач на высшей передаче; ид — передаточное число дополнительной коробки передач на высшей передаче (ид = 1).
Полагают, что передаточные числа коробки передач на высшей передаче имеют следующие значения: ик= 1,0 — для прямой передачи и ик = 0,9…1,0 — для повышающей передачи легковых автомобилей; ик — 1,0 — для грузовых автомобилей с числом передач не более шести; ик = 0,7…0,8 — для многоступенчатых коробок передач грузовых автомобилей.
Найденное расчетным путем передаточное число главной передачи UТ должно иметь следующие значения: не более 5,0 — у легковых автомобилей; не более 7,0 — у грузовых автомобилей грузоподъемностью до 8 т; не более 8,0 — у грузовых автомобилей грузоподъемностью свыше 8 т.
Расчетное значение передаточного числа главной передачи необходимо сравнить с существующими передаточными числами главных передач автомобилей аналогичного типа и назначения. В том случае, если у новой модели автомобиля проектируется ведущий мост, то это значение передаточного числа уточняют с учетом числа зубьев шестерен главной передачи.
Определение передаточного числа первой передачи коробки передач. Определение передаточных чисел промежуточных ступеней коробки передач.
При определении передаточных чисел коробки передач нужно помнить о том, что I передача предназначена для преодоления максимального сопротивления дороги. Промежуточные передачи коробки передач используются при разгоне автомобиля, преодолении повышенного сопротивления движению, работе автомобиля в условиях, не позволяющих двигаться с высокой скоростью (гололед, выбитая дорога, задержка впереди идущим транспортом и т.д.), а также при торможении двигателем на затяжных пологих спусках.
При расчете передаточных чисел сначала находят передаточное число I передачи по заданному техническими условиями максимальному коэффициенту сопротивления дороги ψmах или максимальному динамическому фактору автомобиля по тяге Dmax на I передаче.
Это передаточное число определяют с помощью выражения, полученного из формулы для динамического фактора, пренебрегая силой сопротивления воздуха, так как она незначительна при небольших скоростях движения:
u1=(Gaψmaxrk)/Mmaxηтрuгuд
где Ga — вес автомобиля с полной нагрузкой, Н; Mmax — максимальный крутящий момент двигателя, Н • м.
Полученное передаточное число I передачи коробки передач не гарантирует отсутствия буксования ведущих колес автомобиля. Чтобы не было буксования ведущих колес при движении на I передаче, необходимо выполнение следующего неравенства:
(Mmaxηтрuгuдu1)/ Gark≤Dсц=(mp2Ga2φx)/Ga
где Dсц — динамический фактор автомобиля по сцеплению; тР2 -= 1,20…1,35 — коэффициент изменения реакций на задних ведущих колесах; Ga2 —- вес, приходящийся на задние колеса автомобиля с полной нагрузкой, Н; фх= 0,6…0,8 — коэффициент сцепления колес с дорогой.
Из этого соотношения определяют новое передаточное число I передачи, при котором буксования ведущих колес не будет:
u1=(mp2Ga2φxrk)/ Mmaxηтрuгuд
После проверки передаточного числа I передачи на отсутствие буксования ведущих колес автомобиля из двух найденных передаточных чисел I передачи коробки передач для дальнейших расчетов выбирают меньшее.
По этому значению передаточного числа I передачи и известному значению передаточного числа высшей передачи определяют передаточные числа промежуточных передач.
Если высшая передача прямая (ип = 1), то для расчёта передаточных чисел промежуточных передач используют следующее выражение:
Uk=
где п’ — число передач, не считая повышающую передачу и передачу заднего хода; к — номер передачи.
Если высшая передача повышающая (ик < 1), то значение ее передаточного числа выбирают в соответствии с типом автомобиля, а остальные передаточные числа промежуточных передач рассчитывают с помощью приведенного выше выражения.
Передаточное число передачи заднего хода
Uзк=(1.2…..1,3)u1
Окончательное значение передаточного числа передачи заднего хода определяют при компоновке коробки передач.
Рассчитанные передаточные числа коробки передач являются ориентировочными и при проектировании новой коробки передач могут незначительно изменяться.
Выбираем тип редуктора
Для того, чтобы определиться с типом редуктора, нужно рассмотреть пространственное расположение всех механизмов, которые присоединяются к редуктору, их места креплений и способы монтажа.
- Цилиндрические редукторы:
- Горизонтальный тип такого редуктора подходит для схем, в которых оси входного и выходного валов между собой параллельны и при этом находятся в одной плоскости (а именно, горизонтальной);
- У вертикального цилиндрического типа оси редуктора должны располагаться в одной вертикальной плоскости;
- Планетарный или соосный цилиндрический тип используется в том случае, если оси валов находятся в разных плоскостях, но при этом расположены на одной прямой.
- Коническо-цилиндрические редукторы применяются только для тех схем, где оси валов находятся в одной плоскости (горизонтальной) и перпендикулярны друг другу.
- Червячные редукторы:
- Оси одноступенчатого червячного редуктора должны скрещиваться под прямым углом и лежать в разных плоскостях;
- У двухступенчатого червячного редуктора оси валов пересекаются под прямым углом или параллельны друг другу, но при этом обязательно лежат в разных плоскостях.
Более того, в зависимости от области применения редуктора могут оказать влияние такие факторы, как:
- Громкость работы (самый «тихий» — червячный редуктор);
- КПД или коэффициент полезного действия (самые эффективные в плане работы считаются планетарные редукторы, в то время как у двухступенчатых червячных редукторов КПД самый низкий);
- Стоимость в относительном эквиваленте (планетарные редукторы считаются самыми недорогими).
Также, производя расчет червячного редуктора, следует учитывать тот факт, что его использование в большей мере оправдано при повторяющихся кратковременных режимах эксплуатации.
Передаточное число [I]
Передаточное число редуктора рассчитывается по формуле:
I = N1/N2
где N1 – скорость вращения вала (количество об/мин) на входе; N2 – скорость вращения вала (количество об/мин) на выходе.
Полученное при расчетах значение округляется до значения, указанного в технических характеристиках конкретного типа редукторов.
Таблица 2. Диапазон передаточных чисел для разных типов редукторов
Тип редуктора | Передаточные числа |
Червячный одноступенчатый | 8-80 |
Червячный двухступенчатый | 25-10000 |
Цилиндрический одноступенчатый | 2-6,3 |
Цилиндрический двухступенчатый | 8-50 |
Цилиндрический трехступенчатый | 31,5-200 |
Коническо-цилиндрический одноступенчатый | 6,3-28 |
Коническо-цилиндрический двухступенчатый | 28-180 |
ВАЖНО! Скорость вращения вала электродвигателя и, соответственно, входного вала редуктора не может превышать 1500 об/мин. Правило действует для любых типов редукторов, кроме цилиндрических соосных со скоростью вращения до 3000 об/мин
Этот технический параметр производители указывают в сводных характеристиках электрических двигателей.
Сообщений 1 страница 12 из 12
Поделиться114 января, 2011г. 23:27:56
Ссылка: https://4×4.lviv.ua/?calculator=tuning Модераторы поправьте пожалуйста если не правильно вставил ссылку,просто не понял как это сделать .Спасибо.
Поделиться215 января, 2011г. 09:20:50
Миха150 Спасибо , ссылка хорошая, есть одно но – не подойдет для трактора с приводом только на задние колеса (или только на передние).
Поделиться315 января, 2011г. 09:55:04
Тоже скачал и посмотрел. Не силен я в програмировании, но думаю можно изменить параметры и сделать для одного моста. Или связаться с авторами, дабы сами они сменили, чтобы не-было нарушений
Поделиться415 января, 2011г. 20:29:56
Все подходит я на нем считал полный привод.Очень удобно особенно полноприводный с разными диаметрами колес,в левую колонку забиваеш данные по размерам резины и методом подбора передаточные ГП.Пример:в правую колонку резина в мм 20575R16 и значение ГП УАЗ 5.125 в левую 16580R12 подбираем ГП переднего моста из стандартных ВАЗ у меня получилось 4.1 при этом в графе скорость до и после тюнинга получил одинаковые значения.Так же удобно подбирать скорость . в бщем там все понятно не удобно одно т.к в большинстве случаев приходится ставить 2кпп передаточные числа приходится суммировать на калькуляторе или при помощи карандаша и бумаги,но это кому как нравится.
Отредактировано Миха150 (15 января, 2011г. 20:39:32)
Калькулятор передаточных чисел кпп
Расчет передаточных чисел трансмиссии начинают с расчета передаточного числа на первой и высшей передачах. Номер высшей передачи зависит от того, сколько ступеней предполагается у коробки передач проектируемого автомобиля (три, четыре, пять. ). Передаточное число первой передачи должно обеспечивать преодоление наибольшего дорожного сопротивления движению автомобиля. В этом случае значения касательного усилия, исходя из подведенного крутящего момента двигателя при Мkmax, желательно иметь равным максимальному касательному усилию по сцеплению, т.е.
, (10)
где iтр1,тр1— соответственно передаточное число и КПД на первой передаче;
к— коэффициент нагрузки ведущих колес; для 4х2к = 0,70. 0,75; для 4х4к = 1,0;
rк— динамический радиус ведущих колес, м;
Ма— полная масса автомобиля;
g- ускорение свободного падения;
— максимальное значение коэффициента сцепления (принимается в пределах 0,7. 0,8).
Рис. 1. Внешняя скоростная характеристика карбюраторного двигателя
Для большинства автомобильных коробок передач при переходе с высшей передачи на первую включаются в работу дополнительно две пары цилиндрических шестерен, тогда
, (11)
где тр— КПД трансмиссии на высшей передаче (значения его принимались при расчете мощности двигателя соответствующей максимальной скорости);
ц— КПД одной цилиндрической пары шестерен принимают равным 0,985.
Значения динамического радиуса ведущих колес принимают равными значению их расчетного радиуса качения. Величина расчетного радиуса качения принимается (после подбора размера шин, исходя из максимальной нагрузки и максимальной скорости движения) по справочной литературе или рассчитывается по следующей формуле:
, (12)
где d- диаметр обода колеса, м;
b- высота профиля шины, м;
у— коэффициент усадки, принимается в пределах 0,92. 0,95.
Из выражения (10) имеем
. (13)
При определении передаточного числа трансмиссии на высшей передаче iтрzисходим из того, что на этой передаче будет получена максимальная скорость движения при работе двигателя на режимеVmax, тогда
Расчет цепной передачи
При конструировании багги или квадроцикла часто применяют цепной привод. Рассчитать передаточное отношение цепной передачи несложно, но зачем считать, если есть готовая таблица?
В таблицеуказано передаточное отношение при использовании различных заезд на ведущей и ведомой оси.
При расчете необходимо помнить, что если используется несколько редукторов, то чтобы получить результирующее передаточное отношение, надо перемножить передаточные отношения всех редукторов.
Любое подвижное соединение, передающее усилие и меняющее направление движения, имеет свои технические характеристики. Основным критерием, определяющим изменение угловой скорости и направления движения, является передаточное число. С ним неразрывно связано изменение силы – передаточное отношение. Оно вычисляется для каждой передачи: ременной, цепной, зубчатой при проектировании механизмов и машин.
Перед тем как узнать передаточное число, надо посчитать количество зубьев на шестернях. Затем разделить их количество на ведомом колесе на аналогичный показатель ведущей шестерни. Число больше 1 означает повышающую передачу, увеличивающую количество оборотов, скорость. Если меньше 1, то передача понижающая, увеличивающая мощность, силу воздействия.
Передаточное число [I]
Передаточное число редуктора рассчитывается по формуле:
I = N1/N2
где N1 – скорость вращения вала (количество об/мин) на входе; N2 – скорость вращения вала (количество об/мин) на выходе.
Полученное при расчетах значение округляется до значения, указанного в технических характеристиках конкретного типа редукторов.
Таблица 2. Диапазон передаточных чисел для разных типов редукторов
Тип редуктора | Передаточные числа |
---|---|
Червячный одноступенчатый | 8-80 |
Червячный двухступенчатый | 25-10000 |
Цилиндрический одноступенчатый | 2-6,3 |
Цилиндрический двухступенчатый | 8-50 |
Цилиндрический трехступенчатый | 31,5-200 |
Коническо-цилиндрический одноступенчатый | 6,3-28 |
Коническо-цилиндрический двухступенчатый | 28-180 |
ВАЖНО! Скорость вращения вала электродвигателя и, соответственно, входного вала редуктора не может превышать 1500 об/мин. Правило действует для любых типов редукторов, кроме цилиндрических соосных со скоростью вращения до 3000 об/мин
Этот технический параметр производители указывают в сводных характеристиках электрических двигателей.
Крутящий момент редуктора
Крутящий момент на выходном валу – вращающий момент на выходном валу. Учитывается номинальная мощность , коэффициент безопасности , расчетная продолжительность эксплуатации (10 тысяч часов), КПД редуктора.
Номинальный крутящий момент – максимальный крутящий момент, обеспечивающий безопасную передачу. Его значение рассчитывается с учетом коэффициента безопасности – 1 и продолжительность эксплуатации – 10 тысяч часов.
Максимальный вращающий момент – предельный крутящий момент, выдерживаемый редуктором при постоянной или изменяющейся нагрузках, эксплуатации с частыми пусками/остановками. Данное значение можно трактовать как моментальную пиковую нагрузку в режиме работы оборудования.
Необходимый крутящий момент – крутящий момент, удовлетворяющим критериям заказчика. Его значение меньшее или равное номинальному крутящему моменту.
Расчетный крутящий момент – значение, необходимое для выбора редуктора. Расчетное значение вычисляется по следующей формуле:
Mc2 = Mr2 x Sf ≤ Mn2
где Mr2 – необходимый крутящий момент; Sf – сервис-фактор (эксплуатационный коэффициент); Mn2 – номинальный крутящий момент.
Крутящий момент редуктора
Крутящий момент на выходном валу – вращающий момент на выходном валу. Учитывается номинальная мощность , коэффициент безопасности , расчетная продолжительность эксплуатации (10 тысяч часов), КПД редуктора.
Номинальный крутящий момент – максимальный крутящий момент, обеспечивающий безопасную передачу. Его значение рассчитывается с учетом коэффициента безопасности – 1 и продолжительность эксплуатации – 10 тысяч часов.
Максимальный вращающий момент – предельный крутящий момент, выдерживаемый редуктором при постоянной или изменяющейся нагрузках, эксплуатации с частыми пусками/остановками. Данное значение можно трактовать как моментальную пиковую нагрузку в режиме работы оборудования.
Необходимый крутящий момент – крутящий момент, удовлетворяющим критериям заказчика. Его значение меньшее или равное номинальному крутящему моменту.
Расчетный крутящий момент – значение, необходимое для выбора редуктора. Расчетное значение вычисляется по следующей формуле:
Mc2 = Mr2 x Sf ≤ Mn2
где Mr2 – необходимый крутящий момент; Sf – сервис-фактор (эксплуатационный коэффициент); Mn2 – номинальный крутящий момент.
Выбор по основным характеристикам
Длительный срок службы при обеспечении заданного уровня работы оборудования, с которым работает мотор-редуктор, – ключевая выгода при правильном выборе привода. Наша многолетняя практика показывает, что при определении требований исходить стоит из следующих параметров:
- минимум 7 лет безремонтной работы для червячного механизма;
- от 10–15 лет для цилиндрического привода.
В ходе определения данных для подачи заказа на производство мотор-редуктора ключевыми характеристиками являются:
- мощность подключенного электродвигателя,
- скорость вращения подвижных элементов системы,
- тип питания мотора,
- условия эксплуатации редуктора – режим работы и загрузки.
При расчете мощности электродвигателя для мотор-редуктора за основу берут производительность техники, с которой он будет работать. Производительность редукторного мотора во многом зависит от выходного момента силы и скоростью его работы. Скорость, как и КПД, может меняться при колебаниях напряжения в системе питания двигателя.
Скорость моторного редуктора – это зависимая величина, на которую влияют две характеристики:
- передаточное число;
- частота вращательных движений мотора.
В нашем каталоге есть редукторы с разными скоростными параметрами. Имеются модели с одним или несколькими скоростными режимами. Второй вариант предусматривает наличие системы регулирования скоростных параметров и применяется в случаях, когда во время эксплуатации редуктора необходима периодическая смена скоростных режимов.
Питание двигателя – осуществляется через подачу постоянного или переменного тока. Моторные редукторы постоянного тока рассчитаны на подключение к сети с 1 или 3 фазами (под напряжением 220 и 380В соответственно). Приводы переменного тока работают с напряжением 3, 9, 12, 24 или 27В.
Профессиональный подбор мотор-редуктора в зависимости от эксплуатационных условий требует определения характера и частоты/интенсивности будущей эксплуатации. В зависимости от характера нагруженной деятельности, на которую рассчитан редуктор, это может быть устройство:
- для работы в безударном режиме, с умеренными или сильными ударами;
- с плавной системой пуска для уменьшения разрушительных нагрузок при запуске и остановке привода;
- для продолжительной эксплуатации с частыми включениями (по количеству запусков в час).
По режиму работы мотор-редуктор может быть рассчитан на продолжительную работу двигателя без перегрева в особо тяжелом, тяжелом, среднем, легком режиме.
Крутящий момент редуктора
Крутящий момент на выходном валу – вращающий момент на выходном валу. Учитывается номинальная мощность , коэффициент безопасности , расчетная продолжительность эксплуатации (10 тысяч часов), КПД редуктора.
Номинальный крутящий момент – максимальный крутящий момент, обеспечивающий безопасную передачу. Его значение рассчитывается с учетом коэффициента безопасности – 1 и продолжительность эксплуатации – 10 тысяч часов.
Максимальный вращающий момент – предельный крутящий момент, выдерживаемый редуктором при постоянной или изменяющейся нагрузках, эксплуатации с частыми пусками/остановками. Данное значение можно трактовать как моментальную пиковую нагрузку в режиме работы оборудования.
Необходимый крутящий момент – крутящий момент, удовлетворяющим критериям заказчика. Его значение меньшее или равное номинальному крутящему моменту.
Расчетный крутящий момент – значение, необходимое для выбора редуктора. Расчетное значение вычисляется по следующей формуле:
Mc2 = Mr2 x Sf ≤ Mn2
где Mr2 – необходимый крутящий момент; Sf – сервис-фактор (эксплуатационный коэффициент); Mn2 – номинальный крутящий момент.
Передаточное отношение зубчатой передачи
Значение передаточного числа зубчатой передачи совпадает передаточным отношением. Величина угловой скорости и момента силы изменяется пропорционально диаметру, и соответственно количеству зубьев, но имеет обратное значение.
При схематическом изображении величины силы и перемещения шестерню и колесо можно представить в виде рычага с опорой в точке контакта зубьев и сторонами, равными диаметрам сопрягаемых деталей. При смещении на 1 зубец их крайние точки проходят одинаковое расстояние. Но угол поворота и крутящий момент на каждой детали разный.
Например, шестерня с 10 зубьями проворачивается на 36°. Одновременно с ней деталь с 30 зубцами смещается на 12°. Угловая скорость детали с меньшим диаметром значительно больше, в 3 раза. Одновременно и путь, который проходит точка на наружном диаметре имеет обратно пропорциональное отношение. На шестерне перемещение наружного диаметра меньше. Момент силы увеличивается обратно пропорционально соотношению перемещения.
Крутящий момент увеличивается вместе с радиусом детали. Он прямо пропорционален размеру плеча воздействия – длине воображаемого рычага.
Передаточное отношение показывает, насколько изменился момент силы при передаче его через зубчатое зацепление. Цифровое значение совпадает с переданным числом оборотов.
Передаточное отношение редуктора вычисляется по формуле:
где U12 – передаточное отношение шестерни относительно колеса;
ω1 и ω2 – угловые скорости ведущего и ведомого элемента соединения;
Зубчатая передача имеет самый высокий КПД и наименьшую защиту от перегруза – ломается элемент приложения силы, приходится делать новую дорогостоящую деталь со сложной технологией изготовления.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Ремонт и Доработка» на DRIVE2
в общем, чистил сегодня свой бук и нашел скриншоты с калькулятора кпп.думаю, мало ли-вдруг кому-то пригодятся при выборе бодрого ряда сначала немного поумничаю-чтоб потом на одинаковые вопросы в коментах не отвечать
чем не устраивает сток когда -то давно, когда в автошколах еще действительно чему -то учили, нам говорили, что ездить нужно в диапазоне от 2 до 4 тыс оборотов.если меньше2-переключайся вниз.если прилипает к 4тыс-пора перейти на повышенную.но до 4 я кручу редко.если только на обгонах.обычно переключаюсь на 3000(ибо после трех многие движки уже начинают заметно шуметь).и что получаю?выкручиваем первую до трех, втыкаем вторую и попадаем в 1600…знаменитый вазовский провал между первой и второй.ну, и примерно та же петрушка и на остальных передачах-на нижней движок уже шумит, на повышенной еще не тянет…и 500 оборотов между 4 и 5 передачами меня совершенно не устраивают.нафига в коробке две почти одинаковые передачи?при обгонах на затяжных или крутых подъемах приходится подтыкать третью и выслушивать рев крутящегося на больших оборотах двигателя и дребезжание рычага в основном, ряды бывают восьмого и десятого конструктива.еще есть 12,приоровские и под новую коробку с тросиковым приводом, но это все пока редко встречается, насколько я знаю.мой коробас оказался на 10 конструктиве, а гп 4.3 десятого конструктива то ли не делают, то ли они получаются слишком слабыми(там на валу остается слишком мало места для нормальных зубьев.).поэтому моя коробка собиралась на восьмом конструктиве.для этого существуют переходные комплекты и от себя -бесплатный совет-сток кпп с гп4.1 и блокировкой -отличный вариант на каждый день.и по городу и по трассе.стоит не дорого, едет прилично еще один бесплатный совет-г.п 3.9 самая дешевая и качественная-её ставили на заводе.так же как и гп4.1.гп 4.33 заметно дороже и шумнее.гп 3.5 найти сейчас, наверное, не реально.я не встречал.стоковая гп большинства коробок-3.7 ну всё, больше нудеть не буду, выкладываю обещанное.фоток, к сожалению, можно добавлять только 20(
www.drive2.ru