Ремонт коллектора
Содержание:
- Возможные неисправности коллекторного электродвигателя
- FAQ[править]
- Универсальные коллекторные двигатели
- Изменение геометрии впускного коллектора
- Конструкция[править]
- Особенности универсального двигателя
- Принцип работы коллекторного мотора
- Замена якоря самостоятельно в домашних условиях
- Универсальные коллекторные двигатели
- КАКИЕ НЕИСПРАВНОСТИ ЧАЩЕ ВСЕГО ГРОЗЯТ КОЛЛЕКТОРУ?
- Принцип работ и конструктивные особенности
- Принцип действия
- Способы возбуждения коллекторных двигателей
- Неисправности
- Разновидности
Возможные неисправности коллекторного электродвигателя
Иногда даже люди, знакомые с устройством механизма, слабо представляют, как проверить коллекторный электродвигатель. Ниже мы расскажем обо всех возможных неисправностях и способах их выявления и устранения.
Нарушение контактов. На него указывает активное искрение.
Межвитковое замыкание (замыкание обмоток в коллекторе). Оно также вызывает искрение.
Износ щеточно-коллекторного узла. При этом он чернеет и появляется искрение. Обычно проблема решается путем замены старых элементов на новые. Чтобы снять узел, отодвиньте фиксатор и открутите крепежный болт (в зависимости от модели двигателя).
Потемнение контактной части коллектора. Часто достаточно зачистить его мелкой наждачной бумагой.
Образование канавки в месте контакта щеток с коллектором. Необходимо выполнить проточку узла на станке.
Износ подшипника. Эту неисправность можно определить по усиленной вибрации корпуса во время работы двигателя и биению патрона. В этом случае требуется замена подшипника.
Касание якорем статора. Иногда хватает замены якоря, но в некоторых случаях придется заменить и якорь, и статор.
Сбой управления на микроконтроллере. Установка нового микроконтроллера – оптимальное решение проблемы.
Выгорание или обрыв обмоток
Обратите внимание на их цвет и целостность. Почернение всего корпуса обмоток или их части указывает на выгорание, обрыв легко определяется при визуальном осмотре
В этом случае требуется их замена или перемотка.
Графитовая пыль в пространстве между ламелями. Вашему прибору просто нужна прочистка.
Выгорание изоляции проводов. На эту проблему укажет характерный запах.
Во всех вышеуказанных случаях восстановление коллектора электродвигателя своими руками вполне возможно при наличии необходимых запчастей и инструментов. Только если у вас нет опыта в перемотке обмоток, лучше обратиться в соответствующий сервис. После устранения неполадок соедините все детали в обратном порядке.
FAQ[править]
Мотор крутится не в ту сторонуправить
Чтобы поменять направление вращения бесколлекторного мотора, достаточно поменять местами подключение любых двух из трёх проводов (которые идут к мотору).
Могут ли моторы CW/CCW вращаться в другую сторонуправить
На моторах для мультикоптеров часто есть обозначение направления вращения CW/CCW. Они могут вполне вращаться и в обратную, не предназначенную для них сторону, если поменять местами 2 провода подключения (если в моторе нет встроенного регулятора). Мотор не сломается и его ресурс не уменьшится.
Следует иметь в виду, что обозначения CW/CCW ставятся в соответствии с крепежом пропеллера: направлением резьбы для затяжки пропеллера. То есть если мотор будет крутиться в обратном для него направлении, то возможно самооткручивание гайки и отстрел пропеллера. В таком случае следует применять самозатягивающиеся (нейлоновые) крепления.
Бесколлекторный мотор плохо стартуетправить
Мотор плохо стартует, то есть начинает вращаться, а потом останавливается…
- Большинство причин кроется в больших скачках тока и, как следствие, провалах питающего напряжения. В первую очередь проверьте провода до аккумулятора. Пробную проверку лучше производить на той длине проводов, которые даны изготовителем, или короче.
- Попробуйте снять нагрузку с мотора и проверить его на холостом ходу. Если так всё в порядке, а при установке пропеллера возникают проблемы, только дергается в одном направлении, попробуйте поставить мягкий старт или увеличить время акселерации. Также здесь поможет установка плавного выключения мотора.
- Контроллеры, у которых есть ограничение тока, всегда имеют индикацию этого режима — это поможет установить, произошло срабатывание токовой защиты или нет.
Чем и как смазывать подшипникиправить
- Смазывать надо «быстроходными» маслами, т. е. жидкими. Нижний минимум по вязкости — трансмиссионное масло для мотоциклетных коробок. А лучше купить обычную «веретёнку». Купите один пузырёк, и закроете вопрос на несколько лет.
- Если подшипник разбирать, то внутрь зубочисткой «шрус 4» и пару капель синтетической трансмиссионки. Аккуратно собрать, протереть и прокрутить — всё само перемешается.
- Если подшипник не разбирать, то один из лучших методов смазки — это создать вакуум с помощью шприца. Внутрь шприца налить синтетику для трансмиссии, поместить туда подшипники, и поршень — на разряжение.
- Как это делалось в недалёкую бытность, на большинстве автобаз, ремонтных мастерских и т.д. (способ наших дедов): маленькая ёмкость, смазка, подшипник, и на огонь. Когда сильно нагрелось, снимаем и остужаем. Воздух при нагреве выходит, а при остывании засасывает смазку пока она тёплая и не очень вязкая. Конечно, раньше не было силиконов и других крутых смазок, но наши предки таким образом даже густые смазки в подшипники загоняли.
- При потенциальной опасности попадания воды на/в моторы (полёты вблизи или над водоёмами) полезно заменить все подшипники в моторах на нержавеющие. Иначе от малейшего контакта с (особенно — морской) водой (и даже без контакта) подшипники может заклинить. Ещё более радикальное средство – подшипники с шариками из двуокиси циркония, но стоят дорого.
Моторы загрязнилисьправить
Для чистки моторов от грязи (например, после падения) понадобится разборка, маленькая кисточка с жёстким ворсом (зубочистка) и сжатый воздух. Необходимо избежать попадания жидкостей в подшипники, не только воды или спирта, но и органических растворителей типа WD-40 или бензина, иначе подшипникам быстро выйдут из строя: кроме ржавчины и вымывания смазки могут быть микрогидроудары и кавитация при вращении шариков по влажной обойме.
Как измерять температуру мотораправить
Считается, что температура мотора не должна превышать 80°С. Температуру следует измерять в процессе работы мотора, т.к. он обдувается проходящими массами воздуха от пропеллера, если он полностью не закрыт. Примерно 30° температуры мотор обычно сразу добирает в течении 10 секунд после остановки при работе на максимальной мощности. Проверено инфракрасным датчиком температуры.
Многожильный или одножильный провод намоткиправить
При прочих равных многожильный провод обеспечивает лучшее заполнение окна, в то время как одножильный гораздо лучше держит перегрузки за счёт лучшего охлаждения.
- Если говорить о снятии каких-либо рекордных ТТХ, то лучше многожильный провод намотки, например, как у T-Motor.
- Если просто летать каждый день, то лучше одножильный, так как он живучее к перегреву и крашам.
Универсальные коллекторные двигатели
Несмотря на то, что коллекторный узел можно назвать самым слабым местом электродвигателя, подобные модели нашли широкое применение. Все благодаря невысокой цене и легкости управления скоростью. Коллекторные двигатели переменного тока стоят практически в любой бытовой технике, как крупной, так и мелкой. Миксеры, блендеры, кофемолки, строительные фены, даже стиральные машины (привод барабана).
Универсальный коллекторный двигатель работает от постоянного и переменного напряжения
По строению универсальные коллекторные двигатели не отличаются от моделей постоянного тока с обмотками возбуждения. Разница, безусловно есть, но она не в устройстве, а в деталях:
- Схема возбуждения всегда последовательная.
- Магнитные системы ротора и статора для компенсации магнитных потерь делают шихтованного типа (единая система без сплошных разрезов).
- Обмотка возбуждения состоит из нескольких секций. Это необходимо, чтобы режимы работы на постоянном и переменном напряжении были схожи.
Работа коллекторных электродвигателей универсального типа основана на том, что если одновременно (или почти одновременно) поменять полярность питания на обмотках статора и ротора, направление результирующего момента останется тем же. При последовательной схеме возбуждения полярность меняется с очень небольшой задержкой. Так что направление вращения ротора остается тем же.
Достоинства и недостатки
Хотя универсальные коллекторные двигатели активно используются, они имеют серьёзные недостатки:
- Более низкий КПД при работе на переменном токе (если сравнивать с работой на постоянном такого же напряжения).
- Сильное искрение коллекторного узла на переменном токе.
- Создают радиопомехи.
- Повышенный уровень шума при работе.
Во многих моделях строительной техники
Но все эти недостатки нивелируются тем, что при частоте питающего напряжения в 50 Гц они могут вращаться со скоростью 9000-10000 об/мин. По сравнению с синхронными и асинхронными двигателями это очень много, максимальная их скорость — 3000 об/мин. Именно это обусловило использование этого типа моторов в бытовой технике. Но постепенно они заменяются современными бесщеточными двигателями. С развитием полупроводников их производство и управление становится всё более дешёвым и простым.
Изменение геометрии впускного коллектора
Как уже упоминалось, под каждый двигатель подбирается своя геометрия впускного коллектора. Это позволяет варьировать обороты и улучшать или ухудшать процесс сгорания топлива.
Во всех случаях, изменение геометрии оборачивается изменением скорости воздушного потока.
Вариантов изменения геометрии, как несложно догадаться, всего три:
- Уменьшить или увеличить длину труб;
- Сузить или расширить сечение труб;
- Комбинированный подход.
Так как «играть» длинной труб, зачастую, не представляется возможным, обычно выбирают второй вариант — изменение сечения. Для этого используют специальные заслонки, которые регулируют потоки воздуха иначе, чем заводской механизм.
В автомобилях премиального сегмента присутствует комбинированная система изменения геометрии впускного коллектора.
Это как раз те случаи, когда производитель предлагает разные варианты режимов движения, вроде Comfort, Dinamic и пр. На изменение характеристик мотора отчасти влияет именно работа заслонок впускного коллектора.
Конструкция[править]
Микроэлектродвигатели имеют магнитопровод якоря, выполненный в виде трехзубцового пакета из штампованных листов электротехнической стали.
На рисунке обозначено: 1 — щит; 2 — якорь; 3 — корпус; 4 — коллектор; 5 — постоянные магниты; 6 — скоба; 7 — прокладка.
Петлевая обмотка якоря, имеющая три укороченные секции, намотана непосредственно на зубцы пакета и соединяется в звезду или треугольник. Начало в крышке машины, и трехламельный цилиндрический коллектор, напрессованный каждой секции присоединено к коллекторной пластине. Питание двигателя осуществляется через щеточный узел, смонтированный на валу якоря.
Особенности универсального двигателя
универсального двигателя при его работе от сети переменного тока более низкий, чем при его работе от сети постоянного тока. Другой недостаток универсального двигателя — тяжелые условия коммутации, вызывающие интенсивное искрение на коллекторе при включении двигателя в сеть переменного тока. Этот недостаток объясняется наличием трансформаторной связи между обмотками возбуждения и , что ведет к наведению в коммутируемых секциях трансформаторной ЭДС, ухудшающей процесс коммутации в двигателе.
Наличие щеточно-коллекторного узла является причиной ряда недостатков универсальных коллекторных двигателей, особенно при их работе на переменном токе (искрение на коллекторе, радиопомехи, повышенный шум, невысокая надежность). Однако эти двигатели по сравнению с асинхронными и синхронными при частоте питающего напряжения f = 50 Гц позволяют получать частоту вращения до 10 000 об/мин и более (наибольшая синхронная частота вращения при f = 50 Гц равна 3000 об/мин) .
Принцип работы коллекторного мотора
Электрический ток (DC или direct current), поступая на обмотки якоря (в зависимости от их количества на каждую по очереди) создает в них электромагнитное поле, которое с одной стороны имеет южный полюс, а с другой стороны северный.
Многие знают, что, если взять два любых магнита и приставить их одноименными полюсами друг другу, то они не за что не сойдутся, а если приставить разноименными, то они прилипнут так, что не всегда возможно их разъединить.
Так вот, это электромагнитное поле, которое возникает в любой из обмоток якоря, взаимодействуя с каждым из полюсов магнитов статора, приводит в действие (вращение) сам якорь. Далее ток, через коллектор и щетки переходит к следующей обмотке и так последовательно, переходя от одной обмотки якоря к другой, вал электродвигателя совместно с якорем вращается, но лишь до тех пор, пока к нему подается напряжение.
Замена якоря самостоятельно в домашних условиях
Практика показывает, что если решено заменить якорь болгарки, то менять его лучше всего вместе с опорными подшипниками и крыльчаткой охлаждения двигателя.
Для замены потребуются:
- Новый якорь УШМ. Должен соответствовать вашей модели. Взаимозамена с другими моделями — недопустима.
- Отвёртки, гаечные ключи.
- Мягкая щётка и ветошь для протирки механизма.
Замена якоря начинается с разборки болгарки.
Внимание
Ремонт коллектора электродвигателя Капитальный ремонт с разборкой коллекторов производят в случаях: замыкания между смежными коллекторными пластинами; замыкания между коллекторными пластинами и втулками; замены поврежденных коллекторных пластин; полной замены изношенных пластин.
В первых трех случаях иногда удается устранить неисправность, не снимая коллектор с вала и не отпаивая все коллекторные пластины от обмотки якоря. Для сохранения в процессе ремонта правильной цилиндрической формы коллектора его стягивают по наружной поверхности хомутом, затем отворачивают гайку, сдвигают нажимной конус и осматривают внутреннюю поверхность коллектора.
Замыкание между пластинами чаще всего происходит вследствие попадания металлической стружки или капли припоя внутрь коллектора. Замыкание между пластинами и втулкой обычно происходит в углах миканитовой манжеты.
При ремонте в выточку «ласточкин хвост» вкладывают сегменты, вырезанные из формовочного миканита и выгнутые в горячем состоянии. Если перечисленные неисправности имеются на стороне коллектора, обращенной к якорю, то приходится отпаивать все соединения обмотки с коллекторными пластинами и снимать коллектор с вала с помощью винтового съемника. Для замены поврежденной коллекторной пластины ее отпаивают от обмотки, в стягивающем хомуте делают прорезь и устанавливают ее над поврежденной пластиной.
Повышенное биение коллектора на валу якоря может быть вызвано следующими причинами:
- большим люфтом подшипника или разбитым посадочным местом подшипника;
- износом резиновой амортизационной втулки заднего подшипника;
- плохой балансировкой самого якоря. В этом случае даже при исправных подшипниках и амортизационной втулке при включении машины ощущается повышенная вибрация и замечается повышенный шум от вращения якоря. Подобный дефект устраняется балансировкой якоря на специальном балансировочном станке;
- неравномерным износом коллектора или недостаточно точным изготовлением коллектора. Обнаружить повышенное биение коллектора можно с помощью микрометра, имеющего подпружиненную измерительную штангу. Измеренное таким образом биение коллектора не должно превышать 5 мкм. В противном случае поверхность коллектора нужно обработать в токарном приспособлении, в специальных призмах или другом приспособлении, дающем необходимую точность установки.
Коллекторы якорей высокооборотных электродвигателей должны тщательно проверяться на величину биения.
Плохой прижим щеток к коллектору возможен при износе щеток, ослаблении упругости пружины в щеткодержателе, а также при люфте или заедании щетки в щеткодержателе.
Несоответствие между типом коллектора и материалом используемых щеток. Имеется четыре группы разновидностей щеток , различающихся типом материала и предназначенных для соответствующих видов коллекторов.
Возможно, этому поспособствовала трещина в корпусе, которую можно заметить только при нагрузке.
Универсальные коллекторные двигатели
Несмотря на то, что коллекторный узел можно назвать самым слабым местом электродвигателя, подобные модели нашли широкое применение. Все благодаря невысокой цене и легкости управления скоростью. Коллекторные двигатели переменного тока стоят практически в любой бытовой технике, как крупной, так и мелкой. Миксеры, блендеры, кофемолки, строительные фены, даже стиральные машины (привод барабана).
Универсальный коллекторный двигатель работает от постоянного и переменного напряжения
По строению универсальные коллекторные двигатели не отличаются от моделей постоянного тока с обмотками возбуждения. Разница, безусловно есть, но она не в устройстве, а в деталях:
- Схема возбуждения всегда последовательная.
- Магнитные системы ротора и статора для компенсации магнитных потерь делают шихтованного типа (единая система без сплошных разрезов).
- Обмотка возбуждения состоит из нескольких секций. Это необходимо, чтобы режимы работы на постоянном и переменном напряжении были схожи.
Работа коллекторных электродвигателей универсального типа основана на том, что если одновременно (или почти одновременно) поменять полярность питания на обмотках статора и ротора, направление результирующего момента останется тем же. При последовательной схеме возбуждения полярность меняется с очень небольшой задержкой. Так что направление вращения ротора остается тем же.
Достоинства и недостатки
Хотя универсальные коллекторные двигатели активно используются, они имеют серьёзные недостатки:
- Более низкий КПД при работе на переменном токе (если сравнивать с работой на постоянном такого же напряжения).
- Сильное искрение коллекторного узла на переменном токе.
- Создают радиопомехи.
- Повышенный уровень шума при работе.
Во многих моделях строительной техники
Но все эти недостатки нивелируются тем, что при частоте питающего напряжения в 50 Гц они могут вращаться со скоростью 9000-10000 об/мин. По сравнению с синхронными и асинхронными двигателями это очень много, максимальная их скорость — 3000 об/мин. Именно это обусловило использование этого типа моторов в бытовой технике. Но постепенно они заменяются современными бесщеточными двигателями. С развитием полупроводников их производство и управление становится всё более дешёвым и простым.
В генераторах также одновременно выполняет две функции: является датчиком углового положения ротора со скользящими контактами и переключателем направления тока со скользящими контактами на токосъёмах (щётках) в зависимости от углового положения ротора, т. е. является механическим выпрямителем.
Часть щёточно-коллекторного узла щётка получила своё название от ранних конструкций, в которых действительно была похожа на щётку из множества гибких проволочек. В настоящее время изготавливается в виде бруска из графита или другого токопроводящего материала с малым удельным сопротивлением и малым коэффициентом трения.
КАКИЕ НЕИСПРАВНОСТИ ЧАЩЕ ВСЕГО ГРОЗЯТ КОЛЛЕКТОРУ?
Чаще всего коллекторы электродвигателя выходят из строя или проявляют другие признаки неправильной работы:
-
-
- Под щётки могут попасть твёрдые частицы. Как следствие – на поверхности коллектора образуются шероховатости; замыкание щёток порой провоцирует появление нагара или окисление. Устраняются шлифовкой поверхности коллектора.
- В результате трения щёток (особенно при интенсивной эксплуатации) на коллекторе появляются желобки и канавки. Чтобы их ликвидировать, мы протачиваем узел на токарном станке и правильно располагаем щётки по всей длине агрегата.
- Интенсивная эксплуатация становится причиной того, что контакты истираются и на них выступает изоляция. В этом случае мы углубляем канавки для миканита, фрезеруем электродвигатель и шлифуем изоляционный материал.
- Биение пластин из-за неверной центровки якоря или износа подшипников. С помощью высокоточного специализированного оборудования мы протачиваем деталь на станке, затем заменяем износившийся подшипник и центруем якорь.
-
Наши сотрудники поэтапно ремонтируют коллекторы электродвигателей, а перед этим проводят полную диагностику с целью определения характера и интенсивности повреждений.
Принцип работ и конструктивные особенности
Устройство это достаточно специфичное, обладающее в силу схожести с машинами постоянного тока, похожими характеристиками и присущими им достоинствами.
Отличие от двигателей постоянного тока состоит в материале корпуса статора, изготовленном из листов электротехнической стали, благодаря чему удается добиться снижения потерь на вихревые токи.
Эти двигатели, называемые универсальными благодаря тому, что работают они от переменного и постоянного тока, бывают одно- и трехфазными.
Видео: Универсальный коллекторный двигатель
Принцип действия
Устройство электродвигателя коллекторного демонстрирует, как прибор преобразует электрическую энергию в механическую и в обратном направлении. Это говорит о его возможности использования в качестве генератора. Стоит более подробно рассмотреть коллекторный электродвигатель, схема которого продемонстрирует его возможности.
Законы физики ясно говорят о том, что при пропускании электрического тока сквозь проводник, находящийся в магнитном поле, появляется воздействие на него определенной силы. При этом работает правило правой руки, оказывающее непосредственное влияние на мощность электродвигателя. Коллекторный электродвигатель работает именно по такому основному принципу.
Физика учит нас тому, что основой создания нужных вещей служат маленькие правила. Это и послужило базой для создания рамки, вращающейся в магнитном поле, что и позволило создать коллекторный электродвигатель. Схема показывает, что в магнитное поле помещена пара проводников, ток которых направлен в противоположные стороны, а значит, и силы тоже. Их сумма и дает необходимый крутящий момент. Устройство электродвигателя намного сложнее, так как в него добавлен целый комплекс необходимых элементов, в частности, коллектор, обеспечивающий одинаковое направление тока над полюсами. Неравномерность хода была устранена за счет размещения еще нескольких катушек на якоре, при этом постоянные магниты были заменены на катушки, что позволило уйти от необходимости использования постоянного тока. Это позволило придать крутящему моменту единое направление.
Способы возбуждения коллекторных двигателей
Двигатели мощностью в сотни Ватт, в отличие от предыдущих, содержат четырёхполюсный статор из электромагнитов. Свойства электродвигателей во многом объясняется способом, которым обмотки статора могут подключаться относительно якоря:
- последовательно с якорем (так называемое последовательное возбуждение);
- параллельно с якорем (параллельное возбуждение);
- отдельным источником питания (независимое возбуждение);
- часть обмоток параллельно с якорем, часть последовательно (смешанное возбуждение).
Электродвигатель постоянного тока с независимым возбуждением
В этом электродвигателе обмотка якоря подключена к основному источнику постоянного тока (сети постоянного тока, генератору или выпрямителю), а обмотка возбуждения — к вспомогательному источнику. В цепь обмотки возбуждения включен регулировочный реостат, а в цепь обмотки якоря — пусковой реостат. Регулировочный реостат служит для регулирования частоты вращения якоря двигателя, а пусковой — для ограничения тока в обмотке якоря при пуске. Характерной особенностью электродвигателя является то, что его ток возбуждения не зависит от тока в обмотке якоря (тока нагрузки). Поэтому можно приближенно считать, что и магнитный поток двигателя не зависит от нагрузки. Зависимости момента и частоты вращения от тока будут линейными: момент прямо пропорционален току нагрузки и линейно снижается с ростом частоты вращения.
В цепь обмотки возбуждения никаких выключателей и предохранителей не устанавливают, так как при разрыве этой цепи резко уменьшается магнитный поток электродвигателя, и возникает аварийный режим. Если электродвигатель работает при холостом ходе или небольшой нагрузке на валу, то частота вращения резко возрастает (двигатель идет вразнос). При этом сильно увеличивается ток в обмотке якоря и может возникнуть круговой огонь. Во избежание этого защита должна отключить электродвигатель от источника питания. Резкое увеличение частоты вращения при обрыве цепи обмотки возбуждения объясняется тем, что в этом случае резко уменьшаются магнитный поток, э. д. с., и возрастает ток. А так как приложенное напряжение остается неизменным, то частота вращения будет увеличиваться до тех пор, пока э. д. с. не достигнет значения, приблизительно равного напряжению питания, что необходимо для равновесного состояния электрической цепи якоря.
При нагрузке на валу, близкой к номинальной, электродвигатель в случае разрыва цепи возбуждения остановится, так как электромагнитный момент, который может развить двигатель при значительном уменьшении магнитного потока, уменьшается и станет меньше нагрузочного момента на валу. В этом случае так же резко увеличивается ток, обмотка может выйти из строя из-за перегрева.
Электродвигатель постоянного тока с параллельным возбуждением
Здесь обмотки возбуждения и якоря питаются от одного и того же источника электрической энергии с напряжением. В цепь обмотки возбуждения включен регулировочный реостат, а в цепь обмотки якоря — пусковой реостат.
В рассматриваемом электродвигателе имеет место, по существу, раздельное питание цепей обмоток якоря и возбуждения, вследствие чего ток возбуждения не зависит от тока обмотки якоря. Поэтому электродвигатель с параллельным возбуждением будет иметь такие же характеристики, как и двигатель с независимым возбуждением. Однако двигатель с параллельным возбуждением работает нормально только при питании от источника постоянного тока с неизменным напряжением.
Неисправности
Как и любая другая механическая деталь, впускной коллектор подвержен поломкам. Учитывая простоту конструкции, вариантов неисправностей не так много.
Основные:
- Нарушение герметичности. Вибрации, давление и высокие температуры со временем уничтожают уплотнители. Разгерметизация влияет на качество топливной смети, потерю тяги и оборотов. Проблема решается заменой прокладок, после чего работа двигателя должна нормализоваться;
- Загрязнение коллектора. Налет скапливается на стенках, постепенно уменьшая сечение проходящих воздушных масс. Требуется разборка и чистка трубок, дросселя и камеры нагнетания;
- Механические повреждения. Если коллектор изготовлен из пластика, тот тут только замена. Если из алюминия и повреждения невелики, поможет аргонодуговая сварка;
- Чрезмерная температура в коллекторе. Причин масса и искать их нужно в системе охлаждения, засоренном радиаторе, испорченном датчике, ошибке ЭБУ. Также высокая температура бывает из-за банальной жары на улице;
- «Хлопки». При формировании топливной смеси, система должна быть герметична. Если есть нарушения в системе зажигания, механизме газорапределения, проблемы в камере образования топливной смеси или нарушена герметичность самого впускного коллектора, можно услышать те самые хлопки. Искать причины стоит во всех вышеперечисленных местах.
В последнем случае, конечно, проще положиться на ошибки, о которых сообщает ЭБУ или записаться на комплексную диагностику в сервисе.
Разновидности
Трехполюсной ротор на подшипниках скольжения;
Двухполюсной статор на постоянных магнитах;
В качестве щеток коллекторного узла.
Этот набор характерен для самых маломощных решений, используемых обычно в детских игрушках, где не требуется большая мощность. В состав более мощных двигателей включается еще несколько конструктивных элементов:
Четыре графитовые щетки в виде коллекторного узла;
Ротор с несколькими полюсами на подшипниках качения;
Статор из постоянных магнитов с четырьмя полюсами.
Чаще всего устройство электродвигателя такого типа используется в современных автомобилях для реализации привода вентилятора системы охлаждения и вентиляции, насосов омывателей, дворников и прочих элементов. Существую и более сложные агрегаты.
Мощность электродвигателя в несколько сотен ватт предполагает использование в составе четырехполюсного статора, выполненного из электромагнитов. Для подключения его обмоток может использоваться один из нескольких способов:
Последовательно с ротором. В данном случае получается большой максимальный момент, однако из-за больших оборотов холостого хода велик риск повреждения двигателя.
Параллельно с ротором. В данном случае обороты остаются стабильными в условиях изменяющейся нагрузки, однако максимальный момент заметно меньше.
Смешанное возбуждение, когда часть обмотки подключается последовательно, а часть параллельно. В данном случае совмещены достоинства предыдущих вариантов. Используется этот тип для стартеров автомобилей.
Независимое возбуждение, при котором используется отдельный источник питания. В данном случае получаются характеристики, соответствующие параллельному подключению. Используется этот вариант довольно редко.
Коллекторный электродвигатель обладает определенными достоинствами: их просто изготавливать, ремонтировать, эксплуатировать, а их ресурс работы достаточно велик. В качестве недостатков обычно выделяется следующий: эффективные конструкции подобных устройств обычно являются быстроходными и низкомоментными, поэтому большинство приводов требует установки редукторов. Это утверждение вполне обосновано, так как электрическая машина, ориентированная на низкую скорость, характеризуется заниженным КПД, а также связанными с этим проблемами охлаждения. Последние таковы, что для них сложно найти изящное решение.