Ксенон

Примечания

  1. ↑  (англ.). www.webelements.com. Дата обращения: 6 августа 2009.
  2. Легасов В. А., Соколов В. Б. Ксенон // Химическая энциклопедия : в 5 т. / Гл. ред.  И. Л. Кнунянц. — М.:  Советская энциклопедия, 1990. — Т. 2: Даффа—Меди. — С. 548—549. — 671 с. — 100 000 экз. — ISBN 5-85270-035-5.
  3. Ramsay W., Travers M. W. On the extraction from air of the companions of argon, and neon (англ.) // Report of the Meeting of the British Association for the Advancement of Science. — 1898. — P. 828.
  4. Gagnon, Steve . Thomas Jefferson National Accelerator Facility. Дата обращения: 16 июня 2007.
  5. Williams, David R. . NASA (1 сентября 2004). Дата обращения: 10 октября 2007.
  6. Schilling, James  (недоступная ссылка). Mars Global Circulation Model Group. Дата обращения: 10 октября 2007.
  7. Лидин Р. А., Молочко В. А., Андреева Л. Л. Неорганическая химия в реакциях. Справочник. — 2-е изд.. — Москва: Дрофа, 2007. — С. 609. — 640 с.
  8.  (недоступная ссылка). Дата обращения: 11 сентября 2011.
  9.  (недоступная ссылка). Дата обращения: 16 февраля 2011.
  10.  (недоступная ссылка). Дата обращения: 10 ноября 2015.

Применение ксенона:

  1. 1. Водород
  2. 2. Гелий
  3. 3. Литий
  4. 4. Бериллий
  5. 5. Бор
  6. 6. Углерод
  7. 7. Азот
  8. 8. Кислород
  9. 9. Фтор
  10. 10. Неон
  11. 11. Натрий
  12. 12. Магний
  13. 13. Алюминий
  14. 14. Кремний
  15. 15. Фосфор
  16. 16. Сера
  17. 17. Хлор
  18. 18. Аргон
  19. 19. Калий
  20. 20. Кальций
  21. 21. Скандий
  22. 22. Титан
  23. 23. Ванадий
  24. 24. Хром
  25. 25. Марганец
  26. 26. Железо
  27. 27. Кобальт
  28. 28. Никель
  29. 29. Медь
  30. 30. Цинк
  31. 31. Галлий
  32. 32. Германий
  33. 33. Мышьяк
  34. 34. Селен
  35. 35. Бром
  36. 36. Криптон
  37. 37. Рубидий
  38. 38. Стронций
  39. 39. Иттрий
  40. 40. Цирконий
  41. 41. Ниобий
  42. 42. Молибден
  43. 43. Технеций
  44. 44. Рутений
  45. 45. Родий
  46. 46. Палладий
  47. 47. Серебро
  48. 48. Кадмий
  49. 49. Индий
  50. 50. Олово
  51. 51. Сурьма
  52. 52. Теллур
  53. 53. Йод
  54. 54. Ксенон
  55. 55. Цезий
  56. 56. Барий
  57. 57. Лантан
  58. 58. Церий
  59. 59. Празеодим
  60. 60. Неодим
  61. 61. Прометий
  62. 62. Самарий
  63. 63. Европий
  64. 64. Гадолиний
  65. 65. Тербий
  66. 66. Диспрозий
  67. 67. Гольмий
  68. 68. Эрбий
  69. 69. Тулий
  70. 70. Иттербий
  71. 71. Лютеций
  72. 72. Гафний
  73. 73. Тантал
  74. 74. Вольфрам
  75. 75. Рений
  76. 76. Осмий
  77. 77. Иридий
  78. 78. Платина
  79. 79. Золото
  80. 80. Ртуть
  81. 81. Таллий
  82. 82. Свинец
  83. 83. Висмут
  84. 84. Полоний
  85. 85. Астат
  86. 86. Радон
  87. 87. Франций
  88. 88. Радий
  89. 89. Актиний
  90. 90. Торий
  91. 91. Протактиний
  92. 92. Уран
  93. 93. Нептуний
  94. 94. Плутоний
  95. 95. Америций
  96. 96. Кюрий
  97. 97. Берклий
  98. 98. Калифорний
  99. 99. Эйнштейний
  100. 100. Фермий
  101. 101. Менделеевий
  102. 102. Нобелий
  103. 103. Лоуренсий
  104. 104. Резерфордий
  105. 105. Дубний
  106. 106. Сиборгий
  107. 107. Борий
  108. 108. Хассий
  109. 109. Мейтнерий
  110. 110. Дармштадтий
  111. 111. Рентгений
  112. 112. Коперниций
  113. 113. Нихоний
  114. 114. Флеровий
  115. 115. Московий
  116. 116. Ливерморий
  117. 117. Теннессин
  118. 118. Оганесон
  1. https://en.wikipedia.org/wiki/Xenon
  2. https://de.wikipedia.org/wiki/Xenon
  3. https://ru.wikipedia.org/wiki/Ксенон
  4. http://chemister.ru/Database/properties.php?dbid=1&id=264
  5. https://chemicalstudy.ru/ksenon-svoystva-atoma-himicheskie-i-fizicheskie-svoystva/

Примечание:  Фото https://www.pexels.com, https://pixabay.com

карта сайта

ксенон атомная масса степень окисления валентность плотность температура кипения плавления физические химические свойства структура теплопроводность электропроводность кристаллическая решеткаатом нарисовать строение число протонов в ядре строение электронных оболочек электронная формула конфигурация схема строения электронной оболочки заряд ядра состав масса орбита уровни модель радиус энергия электрона переход скорость спектр длина волны молекулярная масса объем атома электронные формулы сколько атомов в молекуле ксенона ксенонсколько электронов в атоме свойства металлические неметаллические термодинамические 

Коэффициент востребованности
1 028

Почему запретили ксенон

Запрет на установку ксеноновых ламп в фары определенного типа обусловлен повышением опасности вождения. Чтобы разобраться, почему нельзя самостоятельно проводить подобные модификации, стоит выделить ряд проблем, создаваемых некорректно установленным ксеноном:

  1. Ослепление световым потоком водителей встречных и попутных машин.
  2. Биксеноновые фары не улучшают видимость дороги: пучок света распространяется на небольшое расстояние перед машиной.

Каково наказание

Поскольку даже установка ксенона в линзованные фары несоответствующего типа приводят к серьезным ДТП на дорогах, сотрудники ГИБДД отслеживают водителей с модернизированным светом.

Нештатный ксенон – это нарушение ПДД, хотя штрафа за ксенон как такового нет. Если фары не имеют специальной оптики, автомобиль считается технически неисправным и водителю грозит наказание. У него отбирают права на 6-12 месяцев, лампы изымаются без права на возврат.

Установить наличие ксенона на машине, как и светопропускаемость стекол, инспектор технического надзора имеет право только на стационарном посту ГАИ. Штраф за ксенон сам по себе не выписывают.

В какие фары можно ставить

Сперва стоит разобраться, когда нельзя устанавливать ксенон:

  1. HC/HR – такая аббревиатура на европейских автомобилях означает, что на фаре могут быть установлены только галогенные лампочки. Ксенон в этом случае запрещен.
  2. HCR – комбинация указывает на то, что в оптике имеется одна лампа двухрежимного типа. В нее также не устанавливают ксенон.
  3. CR – кроме ламп накаливания, в такую оптику запрещено помещать любые источники света.

Можно ставить ксенон на фары со следующими обозначениями:

  1. DR и DC. Допускается модернизация ксеноном.
  2. DCR. Такой маркировкой обладают машины, оборудованные одной лампой, эксплуатируемой в нескольких режимах. В них разрешена установка ксенона.
  3. HR и DC. В дальний свет помещать ксеноновые лампы запрещается, а в ближний – разрешено.
  4. HR и HC. При наличии этого обозначения установка ксенона возможна только на автомобилях японского производства. Для машин других стран это правило не работает.

Атом и молекула ксенона. Формула ксенона. Строение атома ксенона:

Ксенон (лат. Xenon, от греч. ξένος – «чужой, странный») – химический элемент периодической системы химических элементов Д. И. Менделеева с обозначением Xe и атомным номером 54. Расположен в 18-й группе (по старой классификации – главной подгруппе восьмой группы), пятом периоде периодической системы.

Ксенон – неметалл. Относится к группе инертных (благородных) газов.

Как простое вещество ксенон при нормальных условиях представляет собой инертный одноатомный газ без цвета, вкуса и запаха.

Молекула ксенона одноатомна.

Химическая формула ксенона Xe.

Электронная конфигурация атома ксенона 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 5s2 5p6. Потенциал ионизации (первый электрон) атома ксенона равен 1170,35 кДж/моль (12,1298436(15) эВ).

Строение атома ксенона. Атом ксенона состоит из положительно заряженного ядра (+54), вокруг которого по пяти оболочкам движется 54 электрона. При этом 46 электронов находятся на внутреннем уровне, а 8 электронов – на внешнем. Поскольку ксенон расположен в пятом периоде, оболочек всего пять. Первая – внутренняя оболочка представлена s-орбиталью. Вторая – внутренняя оболочка представлена s- и р-орбиталями. Третья и четвертая – внутренние оболочки представлены s-, р- и d-орбиталями. Пятая – внешняя оболочка представлена s- и р-орбиталями. На внешнем энергетическом уровне атома ксенона на 5s-орбитали находятся два спаренных электрона, на 5p-орбитали находятся шесть спаренных электрона. В свою очередь ядро атома ксенона состоит из 54 протонов и 77 нейтронов. Ксенон относится к элементам p-семейства.

Радиус атома ксенона (вычисленный) составляет 108 пм.

Атомная масса атома ксенона составляет 131,293(6) а. е. м.

Содержание ксенона в земной коре составляет 2,0×10-9 %, в морской воде и океане – 5,0×10-10 %.

Ксенон – химически инертный химический элемент.

Применение[править | править код]

Несмотря на высокую стоимость, ксенон незаменим в ряде случаев:

Ксенон используют для наполнения ламп накаливания, мощных газоразрядных и импульсных источников света (высокая атомная масса газа в колбах ламп препятствует уносу вольфрама с поверхности нити накаливания).

Радиоактивные изотопы (127Xe, 133Xe, 137Xe, и др.) применяют в качестве источников излучения в радиографии и для диагностики в медицине, для обнаружения течи в вакуумных установках.

Фториды ксенона используют для пассивации металлов.

Ксенон как в чистом виде, так и с небольшой добавкой паров цезия-133, является высокоэффективным рабочим телом для электрореактивных (главным образом — ионных и плазменных) двигателей космических аппаратов.

С конца ХХ века ксенон стал применяться, как средство для общего наркоза (достаточно дорогой, но абсолютно нетоксичный, точнее — не вызывает химических последствий — как инертный газ). Первые диссертации о технике ксенонового наркоза в России — 1993 г., в качестве лечебного наркоза эффективно применяется для снятия острых абстинентных состояний (Абстинентный синдром) и лечения наркомании, а также психических и соматических расстройств.

Жидкий ксенон иногда используется как рабочая среда лазеров огромной мощности.

Фториды и оксиды ксенона предложены в качестве мощнейших окислителей ракетного топлива, а так же в качестве компонентов газовых смесей, применяемых в боевых лазерах огромной мощности(как наземных для противовоздушной обороны так и для лазеров космического базирования).

Устройство и принцип работы

Лампа состоит из специальной трубки и прочного стекла, которые хорошо запаяны. Внутри, под большим давлением, находится смесь инертных газов. Большая часть состоит из ксенона.

Также внутри этой лампы имеется два электрода. Они обеспечивают пропуск электрического тока и образуют электрическую дугу для розжига газа. Чтобы газ включился в работу, необходимо потребить большое количество энергии, которая превращается в высоковольтный импульс.

Трубка – это стеклянный корпус. Сама же трубка может иметь разную форму. В этот самый инструмент по обе вертикальные стороны впаиваются электроды, между которыми активизируется электрическая дуга. В трубке существует и другой электрод. Он расположен вертикально вдоль всей трубки. Он ионизирует газовый состав и запускает разряд.

Как происходит работа ксеноновых ламп?

Происходит это в несколько шагов.

  • Шаг первый. Благодаря блоку розжига, происходит подача высоковольтного импульса до 30000 Вольт.
  • Шаг второй. Активизируется электрическая дуга.
  • Шаг третий. Благодаря ионизации газа, через который под большим напряжением проходит ток, создается вспышка белого света. Данный процесс очень важен, т.к. необходим для сокращения электрического сопротивления газа внутри колбы.
  • Шаг четвертый. Ток проходит через газ и активирует работу атомов ксенона.
  • Шаг пятый. Атомы ксенона помогают электронам переходить на орбиты с более высокой энергией.
  • Шаг шестой. Электроны постепенно возвращаются к первоначальным орбитам, при этом образуя энергию, которая будет выраженная в форме фотона. Это обеспечивает подачу яркого и насыщенного света.

Посредничество фтора

Отвлечёмся от современных исследований ксенона и посмотрим на химию его кислородных соединений, бурно развивавшуюся в ХХ веке. Как их получали, не используя при этом умопомрачительные давления? Конечно, приходилось искать другие подходы. Один из них — реакция фторидов ксенона с водой. Известно, что многие фториды (соединения какого-либо элемента с фтором) не терпят присутствия влаги, или, другими словами, кислород из воды заменяет собой фтор из фторида. Впервые таким образом был получен оксид ксенона, содержащий три атома кислорода на один атом ксенона, или XeO3. В 1963 году Д. Х. Темплтон с коллегами (Университет Чикаго, США) растворяли фторид ксенона XeF4 в воде, и при этом образовались прозрачные кристаллы триоксида ксенона. Соответствующее сообщение было опубликовано 2 февраля 1963 года в Journal of American Chemical Society. Полученный оксид оказался на редкость сильным окислителем, а что ещё интереснее — взрывоопасным. О взрывном разложении этого оксида в том же году в журнале Science сообщил Нил Бартлетт. По утверждению экспериментатора, оксид взрывается при нагревании до 30–40°С в вакууме. Но, несмотря на его окислительные и взрывные способности, какого-либо широкого практического или даже лабораторного применения оксид не получил.

Вторым по хронологии получили оксид ксенона, в котором на четыре атома кислорода приходится один атом ксенона, или XeO4. 13 марта 1964 года Дж. Л. Хастон с коллегами (Аргоннская национальная лаборатория, Иллинойс, США) опубликовали сообщение в журнале Science, где описали получение этого оксида через взаимодействие перксената натрия с раствором серной кислоты. Тетрооксид ксенона — неустойчивое вещество, при температуре выше 0°С он разлагается со взрывом. При этом образуются газообразные кислород и ксенон.

Наконец, последний из ряда наиболее простых оксидов ксенона был получен уже практически в наше время. 22 февраля 2011 года в Университете МакМастер (Канада) Д. С. Брок и Г. Дж. Шробильген смогли получить диоксид ксенона XeO2. Занятно, что они использовали достаточно простую реакцию фторида ксенона XeF4 с водой и водным раствором серной кислоты.

Всего на сегодняшний день известно уже более 100 соединений ксенона.

Применение[править | править код]

Ксеноновая лампа-вспышка

Прототип ионного двигателя на ксеноне

Несмотря на высокую стоимость, ксенон незаменим в ряде случаев:

  • Ксенон используют для наполнения ламп накаливания, мощных газоразрядных и импульсных источников света (высокая атомная масса газа в колбах ламп препятствует испарению вольфрама с поверхности нити накаливания).
  • Радиоактивные изотопы (127Xe, 133Xe, 137Xe и др.) применяют в качестве источников излучения в радиографии и для диагностики в медицине, для обнаружения течи в вакуумных установках.
  • Фториды ксенона используют для пассивации металлов.
  • Ксенон как в чистом виде, так и с небольшой добавкой паров цезия-133, является высокоэффективным рабочим телом для электрореактивных (главным образом — ионных и плазменных) двигателей космических аппаратов. В 2020 году Роскосмос заявил о начале строительства космического аппарата «Нуклон» с ядерной силовой установкой. Ксенон будет использоваться в качестве рабочего тела реактивного двигателя.
  • В конце XX века был разработан метод применения ксенона в качестве средства для наркоза и обезболивания. Первые диссертации о технике ксенонового наркоза появились в России в 1993 году. В 1999 году ксенон был разрешён к медицинскому применению в качестве средства для ингаляционного наркоза.
  • В наши дни[] ксенон проходит апробацию в лечении зависимых состояний.
  • Жидкий ксенон иногда используется как рабочая среда лазеров.
  • Фториды и оксиды ксенона предложены в качестве мощнейших окислителей ракетного топлива, а также в качестве компонентов газовых смесей для лазеров.
  • В изотопе 129Xe возможно поляризовать значительную часть ядерных спинов для создания состояния с сонаправленными спинами — состояния, называемого гиперполяризацией.
  • Ксенон используется для наполнения ячейки Голея в детекторах терагерцевого излучения.
  • Для , проявляющего сильные окисляющие свойства.

Получение[править | править код]

Ксенон получают как побочный продукт производства жидкого кислорода на металлургических предприятиях.

В промышленности ксенон получают как побочный продукт разделения воздуха на кислород и азот. После такого разделения, которое обычно проводится методом ректификации, получившийся жидкий кислород содержит небольшие количества криптона и ксенона. Дальнейшая ректификация обогащает жидкий кислород до содержания 0,1—0,2 % криптоно-ксеноновой смеси, которая отделяется адсорбированием на силикагель или дистилляцией. В дальнейшем ксеноно-криптоновый концентрат может быть разделён дистилляцией на криптон и ксенон, подробнее см. .

Из-за своей малой распространённости ксенон гораздо дороже более лёгких инертных газов. В 2009 году цена ксенона составляла около 20 евро за литр газообразного вещества при стандартном давлении.

Ксенон-135

Ксенон-135 является радиоактивным изотопом из ксенона , получают в качестве продукта деления урана. Она имеет период полураспада около 9,2 часов и является самым мощным известным нейтрон абсорбирующий ядерный яд (имеющий поглощения нейтронов сечение 2 млн сараях ). Общий выход ксенона-135 от деления составляет 6,3%, хотя большая часть этого продукта является результатом радиоактивного распада теллура-135 и йода-135, образующегося при делении . Xe-135 оказывает существенное влияние на работу ядерного реактора ( ксеноновая яма ). Некоторые атомные электростанции в небольших количествах выбрасывают его в атмосферу.

Распространённость

В Солнечной системе

Ксенон относительно редок в атмосфере Солнца, на Земле, в составе астероидов и комет. Концентрация ксенона в атмосфере Марса аналогична земной: 0,08 миллионной доли, хотя содержание 129Xe на Марсе выше, чем на Земле или Солнце. Поскольку данный изотоп образуется в процессе радиоактивного распада, полученные данные могут свидетельствовать о потере Марсом первичной атмосферы, возможно, в течение первых 100 миллионов лет после формирования планеты. У Юпитера, напротив, необычно высокая концентрация ксенона в атмосфере — почти в два раза выше, чем у Солнца.

Земная кора

Ксенон находится в земной атмосфере в крайне незначительных количествах, 0,087±0,001 миллионной доли (μL/L), а также встречается в газах, испускаемых некоторыми минеральными источниками. Некоторые радиоактивные изотопы ксенона, например, 133Xe и 135Xe, получаются как результат нейтронного облучения ядерного топлива в реакторах.

Применение

Ксеноновая лампа-вспышка

Прототип ионного двигателя на ксеноне.

Несмотря на высокую стоимость, ксенон незаменим в ряде случаев:

  • Ксенон используют для наполнения ламп накаливания, мощных газоразрядных и импульсных источников света (высокая атомная масса газа в колбах ламп препятствует испарению вольфрама с поверхности нити накаливания).
  • Радиоактивные изотопы (127Xe, 133Xe, 137Xe и др.) применяют в качестве источников излучения в радиографии и для диагностики в медицине, для обнаружения течи в вакуумных установках.
  • Фториды ксенона используют для пассивации металлов.
  • Ксенон как в чистом виде, так и с небольшой добавкой паров цезия-133, является высокоэффективным рабочим телом для электрореактивных (главным образом — ионных и плазменных) двигателей космических аппаратов.
  • В конце XX века был разработан метод применения ксенона в качестве средства для наркоза и обезболивания. Первые диссертации о технике ксенонового наркоза появились в России в 1993 г. В 1999 году ксенон был разрешён к медицинскому применению в качестве средства для ингаляционного наркоза.
  • В наши дни[уточнить] ксенон проходит апробацию в лечении зависимых состояний.
  • Жидкий ксенон иногда используется как рабочая среда лазеров.
  • Фториды и оксиды ксенона предложены в качестве мощнейших окислителей ракетного топлива, а также в качестве компонентов газовых смесей для лазеров.
  • В изотопе 129Xe возможно поляризовать значительную часть ядерных спинов для создания состояния с сонаправленными спинами — состояния, называемого гиперполяризацией.
  • Для , проявляющего сильные окисляющие свойства.

Свойства[править | править код]

Физические свойстваправить | править код

Гранецентрированная кубическая структура ксенона; a = 0,6197 нм

При нормальном давлении температура плавления 161,40 К (−111,75 °C), температура кипения 165,051 К (−108,099 °C). Молярная энтальпия плавления 2,3 кДж/моль, молярная энтальпия испарения 12,7 кДж/моль, стандартная молярная энтропия 169,57 Дж/(моль·К).

Плотность в газообразном состоянии при стандартных условиях (0 °C, 100 кПа) 5,894 г/л (кг/м3), в 4,9 раза тяжелее воздуха. Плотность жидкого ксенона при температуре кипения 2,942 г/см3. Плотность твёрдого ксенона 2,7 г/см3 (при 133 К), он образует кристаллы кубической сингонии (гранецентрированная решётка), пространственная группа Fm3m, параметры ячейки a = 0,6197 нм, Z = 4.

Критическая температура ксенона 289,74 К (16,59 °C), критическое давление 5,84 МПа, критическая плотность 1,099 г/см3.

Тройная точка: температура 161,36 К (−111,79 °C), давление 81,7 кПа, плотность 3,540 г/см3.

В электрическом разряде светится синим цветом (462 и 467 нм). Жидкий ксенон является сцинтиллятором.

Заполненная ксеноном газоразрядная трубка

Слабо растворим в воде (0,242 л/кг при 0 °C, 0,097 л/кг при 25 °C).

При стандартных условиях (273 К, 100 кПа): теплопроводность 5,4 мВт/(м·К), динамическая вязкость 21 мкПа·с, коэффициент самодиффузии 4,8·10−6 м2/с, коэффициент сжимаемости 0,9950, молярная теплоёмкость при постоянном давлении 20,79 Дж/(моль·К).

Ксенон диамагнитен, его магнитная восприимчивость −4,3·10−5. Поляризуемость 4,0·10−3 нм3. Энергия ионизации 12,1298 эВ.

Химические свойстваправить | править код

Ксенон стал первым инертным газом, для которого были получены настоящие химические соединения. Примерами соединений могут быть дифторид ксенона, тетрафторид ксенона, гексафторид ксенона, триоксид ксенона, ксеноновая кислота и другие.

Первое соединение ксенона было получено Нилом Барлеттом реакцией ксенона с гексафторидом платины в 1962 году. В течение двух лет после этого события было получено уже несколько десятков соединений, в том числе фториды, которые являются исходными веществами для синтеза всех остальных производных ксенона.

В настоящее время описаны фториды ксенона и их различные комплексы, оксиды, оксифториды ксенона, малоустойчивые ковалентные производные кислот, соединения со связями Xe-N, ксенонорганические соединения. Относительно недавно был получен комплекс на основе золота, в котором ксенон является лигандом. Существование ранее описанных относительно стабильных хлоридов ксенона не подтвердилось (позже были описаны эксимерные хлориды с ксеноном).

Реакции со фтором:

Xe+F2→XeF2{\displaystyle {\mathsf {Xe+F_{2}\rightarrow XeF_{2}}}} при комнатной температуре и УФ-облучении или при 300—500 ºC под давлением;
Xe+2F2→XeF4{\displaystyle {\mathsf {Xe+2F_{2}\rightarrow XeF_{4}}}} при 400 ºC под давлением; примеси XeF2, XeF6;
Xe+3F2→XeF6{\displaystyle {\mathsf {Xe+3F_{2}\rightarrow XeF_{6}}}} при 300 ºC под давлением; примесь XeF4.

Изотопыправить | править код

Основная статья: Изотопы ксенона

Известны изотопы ксенона с массовыми числами от 108 до 147 (количество протонов 54, нейтронов от 54 до 93), и 12 ядерных изомеров.

9 изотопов встречаются в природе. Из них стабильными являются семь: 126Xe, 128Xe, 129Xe, 130Xe, 131Xe, 132Xe, 134Xe. Еще два изотопа (124Xe и 136Xe) имеют огромные периоды полураспада, много больше возраста Вселенной.

Остальные изотопы искусственные, самые долгоживущие — 127Xe (период полураспада 36,345 суток) и 133Xe (5,2475 суток), период полураспада остальных изотопов не превышает 20 часов. Среди ядерных изомеров наиболее стабильны 131Xem с периодом полураспада 11,84 суток, 129Xem (8,88 суток) и 133Xem (2,19 суток).

Изотоп ксенона с массовым числом 135 (период полураспада 9,14 часа) имеет максимальное сечение захвата тепловых нейтронов среди всех известных веществ — примерно 3 миллиона барн для энергии 0,069 эВ, его накопление в ядерных реакторах в результате цепочки β-распадов ядер теллура-135 и иода-135 приводит к эффекту так называемого отравления ксеноном (см. также Иодная яма).

Получение

Ксенон получают как побочный продукт производства жидкого кислорода на металлургических предприятиях.

В промышленности ксенон получают как побочный продукт разделения воздуха на кислород и азот. После такого разделения, которое обычно проводится методом ректификации, получившийся жидкий кислород содержит небольшие количества криптона и ксенона. Дальнейшая ректификация обогащает жидкий кислород до содержания 0,1—0,2 % криптоно-ксеноновой смеси, которая отделяется адсорбированием на силикагель или дистилляцией. В дальнейшем ксеноно-криптоновый концентрат может быть разделён дистилляцией на криптон и ксенон, подробнее см. Криптон#Получение.

Из-за своей малой распространённости ксенон гораздо дороже более лёгких инертных газов. В 2009 году цена ксенона составляла около 20 евро за литр газообразного вещества при стандартном давлении.

Применение

Ксеноновая лампа-вспышка

Прототип ионного двигателя на ксеноне.

Несмотря на высокую стоимость, ксенон незаменим в ряде случаев:

  • Ксенон используют для наполнения ламп накаливания, мощных газоразрядных и импульсных источников света (высокая атомная масса газа в колбах ламп препятствует испарению вольфрама с поверхности нити накаливания).
  • Радиоактивные изотопы (127Xe, 133Xe, 137Xe и др.) применяют в качестве источников излучения в радиографии и для диагностики в медицине, для обнаружения течи в вакуумных установках.
  • Фториды ксенона используют для пассивации металлов.
  • Ксенон как в чистом виде, так и с небольшой добавкой паров цезия-133, является высокоэффективным рабочим телом для электрореактивных (главным образом — ионных и плазменных) двигателей космических аппаратов.
  • В конце XX века был разработан метод применения ксенона в качестве средства для наркоза и обезболивания. Первые диссертации о технике ксенонового наркоза появились в России в 1993 г. В 1999 году ксенон был разрешён к медицинскому применению в качестве средства для ингаляционного наркоза.
  • В наши дни[уточнить] ксенон проходит апробацию в лечении зависимых состояний.
  • Жидкий ксенон иногда используется как рабочая среда лазеров.
  • Фториды и оксиды ксенона предложены в качестве мощнейших окислителей ракетного топлива, а также в качестве компонентов газовых смесей для лазеров.
  • В изотопе 129Xe возможно поляризовать значительную часть ядерных спинов для создания состояния с сонаправленными спинами — состояния, называемого гиперполяризацией.
  • Для , проявляющего сильные окисляющие свойства.

Свойства

Физические свойства

Гранецентрированная кубическая структура ксенона; a = 0,6197 нм

При нормальном давлении температура плавления 161,40 К (−111,75 °C), температура кипения 165,051 К (−108,099 °C). Молярная энтальпия плавления 2,3 кДж/моль, молярная энтальпия испарения 12,7 кДж/моль, стандартная молярная энтропия 169,57 Дж/(моль·К).

Плотность в газообразном состоянии при стандартных условиях (0 °C, 100 кПа) 5,894 г/л (кг/м3), в 4,9 раза тяжелее воздуха. Плотность жидкого ксенона при температуре кипения 2,942 г/см3. Плотность твёрдого ксенона 2,7 г/см3 (при 133 К), он образует кристаллы кубической сингонии (гранецентрированная решётка), пространственная группа Fm3m, параметры ячейки a = 0,6197 нм, Z = 4.

Критическая температура ксенона 289,74 К (16,59 °C), критическое давление 5,84 МПа, критическая плотность 1,099 г/см3.

Тройная точка: температура 161,36 К (−111,79 °C), давление 81,7 кПа, плотность 3,540 г/см3.

В электрическом разряде светится синим цветом (462 и 467 нм). Жидкий ксенон является сцинтиллятором.

Заполненная ксеноном газоразрядная трубка

Слабо растворим в воде (0,242 л/кг при 0 °C, 0,097 л/кг при 25 °C).

При стандартных условиях (273 К, 100 кПа): теплопроводность 5,4 мВт/(м·К), динамическая вязкость 21 мкПа·с, коэффициент самодиффузии 4,8·10−6 м2/с, коэффициент сжимаемости 0,9950, молярная теплоёмкость при постоянном давлении 20,79 Дж/(моль·К).

Ксенон диамагнитен, его магнитная восприимчивость −4,3·10−5. Поляризуемость 4,0·10−3 нм3. Энергия ионизации 12,1298 эВ.

Химические свойства

Ксенон стал первым инертным газом, для которого были получены настоящие химические соединения. Примерами соединений могут быть дифторид ксенона, тетрафторид ксенона, гексафторид ксенона, триоксид ксенона, ксеноновая кислота и другие.

Первое соединение ксенона было получено Нилом Барлеттом реакцией ксенона с гексафторидом платины в 1962 году. В течение двух лет после этого события было получено уже несколько десятков соединений, в том числе фториды, которые являются исходными веществами для синтеза всех остальных производных ксенона.

В настоящее время описаны фториды ксенона и их различные комплексы, оксиды, оксифториды ксенона, малоустойчивые ковалентные производные кислот, соединения со связями Xe-N, ксенонорганические соединения. Относительно недавно был получен комплекс на основе золота, в котором ксенон является лигандом. Существование ранее описанных относительно стабильных хлоридов ксенона не подтвердилось (позже были описаны эксимерные хлориды с ксеноном).

Реакции со фтором:

 Xe + F2 → XeF2   при комнатной температуре и УФ-облучении или при 300—500 ºC под давлением;
 Xe + 2F2 → XeF4  при 400 ºC под давлением; примеси XeF2, XeF6;
 Xe + 3F2 → XeF6  при 300 ºC под давлением; примесь XeF4.

Изотопы

Основная статья: Изотопы ксенона

Известны изотопы ксенона с массовыми числами от 108 до 147 (количество протонов 54, нейтронов от 54 до 93), и 12 ядерных изомеров.

9 изотопов встречаются в природе. Из них стабильными являются семь: 126Xe, 128Xe, 129Xe, 130Xe, 131Xe, 132Xe, 134Xe. Еще два изотопа (124Xe и 136Xe) имеют огромные периоды полураспада, много больше возраста Вселенной.

Остальные изотопы искусственные, самые долгоживущие — 127Xe (период полураспада 36,345 суток) и 133Xe (5,2475 суток), период полураспада остальных изотопов не превышает 20 часов. Среди ядерных изомеров наиболее стабильны 131Xem с периодом полураспада 11,84 суток, 129Xem (8,88 суток) и 133Xem (2,19 суток).

Изотоп ксенона с массовым числом 135 (период полураспада 9,14 часа) имеет максимальное сечение захвата тепловых нейтронов среди всех известных веществ — примерно 3 миллиона барн для энергии 0,069 эВ, его накопление в ядерных реакторах в результате цепочки β-распадов ядер теллура-135 и йода-135 приводит к эффекту так называемого отравления ксеноном (см. также Иодная яма).

Фториды ксенона

Настало время проверить правильность гипотезы о возможности прямого взаимодействия ксенона с фтором.
Смесь газов (1 часть ксенона и 5 частей фтора) поместили в никелевый (поскольку никель наиболее устойчив к действию фтора) сосуд и нагрели под сравнительно небольшим давлением. Через час сосуд быстро охладили, а оставшийся в нем газ откачали и проанализировали. Это был фтор. Весь газ прореагировал! Вскрыли сосуд и обнаружили в нем бесцветные кристаллы XeF,.
Тетрафторид Xe оказался вполне устойчивым соединением, молекула его имеет форму квадрата с ионами фтора по углам и ксеноном в центре. Тетрафторид Xe фторирует ртуть:
XeF4 + 2Hg  → Хе + 2HgF2.
Платина тоже фторируется этим веществом, но только растворенным во фтористом водороде.
Интересно в химии ксенона то, что, меняя условия реакции, можно получить не только XeF4, но и другие фториды — XeF2, XeF6.
Советские химики В. М. Хуторецкий и В. А. Шпанский показали, что для синтеза дпфторида ксенона совсем не обязательны жесткие условия. По предложенному ими способу смесь ксенона и фтора (в молекулярном отношении 1:1) подается в сосуд из никеля или нержавеющей стали, и при повышении давления до 35 атм начинается самопроизвольная реакция.
Дифторпд ксенона XeF2 можно получить, не пользуясь элементарным фтором. Он образуется при действии электрического разряда на смесь ксенона и четырехфтористого углерода. Возможен, конечно, и прямой синтез. Очень чистый XeF2 получается, если смесь ксенона и фтора облучить ультрафиолетом. Растворимость дифторида в воде невелика, однако раствор его — сильнейший окислитель. Постепенно он саморазлагается на ксенон, кислород и фтористый водород; особенно быстро разложение идет в щелочной среде. Дифторид имеет резкий специфический запах.
Большой теоретический интерес представляет метод синтеза дифторида ксенона, основанный на воздействии на смесь газов ультрафиолетового излучения (длина волн порядка 2500—3500 А). Излучение вызывает расщепление, молекул фтора F2 на свободные атомы. В этом и заключается причина образования дифторида: атомарный фтор необычайно активен.

6677 62844333золота33246620424окись бариянатриялитиякальциякалия

При действии озона на раствор ХеO3 в одномолярном едком натре образуется натриевая соль высшей кислоты ксенона Na4XeO6. Перксенонат натрия может быть выделен в виде бесцветного кристаллогидрата Na4XeO6 • 6Н2O. К образованию перксенонатов приводит и гидролиз XeF6 в гидроокисях натрия и калия. Если твердую соль Na4XeO6 об-работать раствором нитрата свинца, серебра или уранила UO22+ получаются соответствующие перксенопаты. Перксенонат серебра — черного цвета, свинца и уранила — желтого. Перксенонатанион — самый сильный из ионов окислителей. Чрезвычайно мощный окислитель и перхлорат ксенона Хе(СlO4)г, в котором ксенон играет роль катиона. Из всех окислителей-перхлоратов он самый сильный.
Окисел, соответствующий высшей кислоте ксенона, получают при взаимодействии Na4XeO6 с охлажденной безводной серной кислотой. Получается уже упоминавшаяся четырехокись ксенона ХеO4. Ее молекула построена в виде тетраэдра с атомом ксенона в центре. Вещество это нестойко. При температуре выше 0°С оно разлагается на кислород и ксенон. Иногда разложение четырехокиси ксенона (трехокиси — тоже) носит характер взрыва.
И все-таки большинство известных ныне соединений ксенона (а всего их получено примерно полторы сотни) — бескислородные. Преимущественно это двойные соли — продукты взаимодействия фторидов ксенона с фторидами сурьмы, мышьяка, бора, тантала, ниобия, хрома, платиновых металлов.
Сильные окислительные свойства соединений ксенона химики уже используют в своих целях. Так, водные растворы дифторида ксенона позволили впервые в мировой практике получить перброматы — соединения семивалентного брома, состав которых МВгO4, где М — одновалентный металл.

Изотопы

Для ксенона известны изотопы с массовыми числами от 110 до 147, и 12 ядерных изомеров. Из них стабильными являются изотопы с массовыми числами 124, 126, 128, 129, 130, 131, 132, 134, 136. Остальные изотопы радиоактивны, самые долгоживущие — 127Xe (период полураспада 36,345 суток) и 133Xe (5,2475 суток), период полураспада остальных изотопов не превышает 20 часов. Среди ядерных изомеров наиболее стабильны 131Xem с периодом полураспада 11,84 суток, 129Xem (8,88 суток) и 133Xem (2,19 суток).

Изотоп ксенона с массовым числом 135 (период полураспада 9,14 часа) имеет максимальное сечение захвата тепловых нейтронов среди всех известных веществ — примерно 3 миллиона барн для энергии 0,069 эВ, его накопление в ядерных реакторах в результате цепочки β-распадов ядер теллура-135 и иода-135 приводит к эффекту так называемого отравления ксеноном (см. также Иодная яма).

Распространённость

В Солнечной системе

Ксенон относительно редок в атмосфере Солнца, на Земле, в составе астероидов и комет. Концентрация ксенона в атмосфере Марса аналогична земной: 0,08 миллионной доли, хотя содержание 129Xe на Марсе выше, чем на Земле или Солнце. Поскольку данный изотоп образуется в процессе радиоактивного распада, полученные данные могут свидетельствовать о потере Марсом первичной атмосферы, возможно, в течение первых 100 миллионов лет после формирования планеты. У Юпитера, напротив, необычно высокая концентрация ксенона в атмосфере — почти в два раза выше, чем у Солнца.

Земная кора

Ксенон находится в земной атмосфере в крайне незначительных количествах, 0,087±0,001 миллионной доли (μL/L), а также встречается в газах, испускаемых некоторыми минеральными источниками. Некоторые радиоактивные изотопы ксенона, например, 133Xe и 135Xe, получаются как результат нейтронного облучения ядерного топлива в реакторах.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector