Детали машин
Содержание:
- Что такое модуль зубчатого колеса
- 15.2. Геометрические параметры и способы изготовления чп.
- Что такое зубчатая передача
- Как рассчитать передаточное число
- Определения
- Как рассчитать передаточное число
- Типы главной передачи по виду зубчатого соединения
- 3.4. Редуктор с двумя внутренними зацеплениями (рис. 3.Б)
- Подставив сюда z3 из (3.25) и z4 из (3.26) и несколько преобразуя, получим:
- Общее определение
- Назначение, конструктивные особенности
- Червячная передача
Что такое модуль зубчатого колеса
Современные шестерни далеко ушли от своих деревянных шестизубых предков, изготавливаемых механиками с помощью воображения и мерной веревочки. Конструкция передач намного усложнилась, тысячекратно возросли скорость вращения и усилия, передаваемые через такие передачи. В связи с этим усложнились и методы их конструирования. Каждую шестеренку характеризует несколько основных параметров
- диаметр;
- число зубьев;
- высота зубца;
- и некоторые другие.
Одним из самых универсальных характеристик является модуль зубчатого колеса. Существует для подвида — основной и торцевой.
В большинстве расчетов используется основной. Он рассчитывается применительно к делительной окружности и служит одним из важнейших параметров.
Для расчета этого параметра применяют следующие формулы:
где t — шаг.
где h — высота зубца.
И, наконец,
где De — диаметр окружности выступов,а z — число зубьев.
Что же такое модуль шестерни?
это универсальная характеристика зубчатого колеса, связывающая воедино такие его важнейшие параметры, как шаг, высота зуба, число зубов и диаметр окружности выступов. Эта характеристика участвует во всех расчетах, связанных с конструированием систем передач.
Вопросы для контроля
- Что называют механической передачей, их основные разновидности?
- Что представляют собой зубчатые передачи: описание, назначение, классификация, достоинства и недостатки?
- Каков принцип работы червячных зубчатых передач, их основные достоинства и недостатки?
- Что представляют собой передачи с гибкими звеньями: описание, назначение, классификация?
- Какие основные достоинства и недостатки ременных передач в сравнении с цепными?
- Что представляют собой фрикционные передачи: описание, назначение, классификация?
Это интересно: Транзистор — виды, применение и принципы работы
15.2. Геометрические параметры и способы изготовления чп.
В ЧП, так же как
и в зубчатой, различают диаметры начальных
и делительных цилиндров: dw1,
dw2
– начальные диаметры червяка и колеса;
d1,
d2
– делительные диаметры червяка и колеса.
В передачах без смещения (х = 0) dw1
= d1,
dw2
= d2.
Точкакасания
начальных цилиндров является полюсом
зацепления.
Червяки. Различают
по следующим признакам: форме поверхности,
на которой образуется резьба, —
цилиндрические (рис.15.2, а ) и глобоидные
(рис. 15.2, б );
Рис. 15.2
форме профиля
резьбы – с прямолинейным (рис. 15.3, а ) и
криволинейным (рис. 15.3, б ) профилем в
осевом сечении.
Рис. 15.3
Наиболее
распространены цилиндрические червяки.
У червяков с прямолинейным профилем в
осевом сечении в торцовом сечении витки
очерчены архимедовой спиралью, отсюда
и название –
архимедов червяк.
Архимедов червяк
подобен ходовому винту с трапецеидальной
резьбой. Его можно нарезать на обычных
токарных или резьбофрезерных станках.
Поэтому первые червячные передачи
выполняли с архимедовыми червяками,
которые широко применяются и в настоящее
время.
В последнее время
всё шире стали применять шлифованные
высокотвёрдые червяки – HRC
≥ 45. Для шлифования архимедовых червяков
требуются специальные шлифовальные
круги фасонного профиля, что затрудняет
обработку и снижает точность изготовления.
По этому архимедовы червяки изготовляют
в основном с нешлифованными витками
при НВ ≤ 350. Для высокотвёрдых шлифуемых
витков применяют эвольвентные червяки.
Эвольвентные
червяки имеют эвольвентный профиль в
торцовом сечении и, следовательно,
подобны косозубым эвольвентным колёсам,
у которых число зубьев равно числу
заходов червяка. Основное преимущество
эвольвентных червяков – возможность
шлифования витков плоской стороной
круга. Однако для этого требуются
специальные червячно-шлифовальные
станки.
Способ изготовления
является решающим при выборе профиля
нарезки червяка, так как при одинаковом
качестве изготовления форма профиля
мало влияет на работоспособность
передачи. Выбор профиля нарезки червяка
связан также с формой инструмента для
нарезания червячного колеса.
Червячное колесо
нарезают червячными фрезами. Червячная
фреза для нарезки червячного колеса
является копией червяка. Только фреза
имеет режущие кромки и наружный диаметр
больше на двойной размер радиального
зазора в зацеплении. При нарезании
заготовка колеса и фреза совершают
такое же взаимное движение, какое имеют
червячное колесо и червяк в передаче.
Такой метод нарезания колеса
автоматоматически обеспечивает
сопряжённость профилей червяка и
червячного колеса.
Для ограничения
номенклатуры режущего инструмента
вводится стандарт на основные
геометрические параметры червяка.
Основные
геометрические параметры червяка
следуюшие (см. рис. 15.3):
= 20
– профильный угол (в осевом сечении для
архимедовых червяков),
— осевой модуль,
p
– осевой шаг,
d1
= qm
– диаметр делительной окружности
червяка,
q
– коэффициент диаметра червяка.
Значения q
и m
cтандартизированы.
Наиболее часто встречающиеся значения:
m
= 2; 2,5; 3,15; 4; 5; 6,3; 8; 10; 12,5 мм;
q
= 8; 10; 12,5; 16; 20.
Для того чтобы
исключить слишком тонкие червяки,
стандарт предусматривает увеличение
q
с уменьшением m.
Диаметры (см.
рис. 15.3):
Угол
подъёма винтовой линииопределяется как
Передаточное
отношение
здесь z1
– число заходов червяка ( по стандарту
z1
= 1, 2, 4)
z2
– число зубьев червячного колеса (по
условию не подрезания зубьев z2
≥ 28).
Червячные
колёса.
При нарезании
без смещения
,
Размеры b2
и daM2
определяются с учётом угла обхвата
червяка колесом
(силовые передачи)
по эмпирическим зависимостям в зависимости
от z1.
Что такое зубчатая передача
В данном случае речь идет про механическое соединение двух, либо большего числа валов, приводящихся в движение благодаря специальным колесам, на чьей поверхности расположены соответствующие зубья. Данный вариант совмещения можно подразделить по следующим параметрам:
- расположению рабочих элементов в корпусе;
- вычисляемой скорости вращения колесной оси;
- уровню защиты механизма от воздействия из вне;
- типу, а также форме зубьев.
Здесь необходимо принимать во внимание тот факт, что наиболее значимая роль в работе всего механизма отведена передаточному отношению зубчатой передачи. Вычислить эти сведения можно благодаря стандартному выражению
Для поиска точных сведения подставляются различные параметры (к примеру, число зубьев). Здесь I12 – это передаточное отношение от первого звена ко второму (1 – ведущее звено, 2 – ведомое звено). Параметры d – диаметры звеньев. Переменные Z – число зубьев. Показатели M – крутящий момент для звеньев. W – угловые скорости звеньев, n – частота вращения звеньев.
В данном случае необходимо принимать во внимание тот факт, что конечный показатель напрямую зависит от числа присутствующих звеньев. Преимущество подобного соединения в том, что здесь присутствует постоянство реального, а также расчетного передаточных отношений
Именно поэтому, здесь отсутствует так называемый эффект проскальзывания. В зависимости от числа шестеренок и количества колес зубчатыми звеньями, оказывается значительное влияние на окончательную величину данного показателя.
Если же говорить про цилиндрические передачи, то здесь конечный параметр, за исключением указанных выше моментов, зависит от расстояния между осями. На практике, цилиндрические зубчатые механизмы очень часто применяются в автомобилестроении при производстве легкового и грузового транспорта. Наиболее часто подобные соединения встречаются в трансмиссии. Стоит отметить, что зубчатая передача выделяется наибольшим коэффициентом отдачи мощности. На практике, этот механизм способен вырабатывать до 4 500 кВт при условии, что передаточное число достигает 6,3.
Также некоторое распространение получили не только цилиндрические элементы, но и конструктивные компоненты с зубьями конического вида. Для них применяется ортогональное сочленение. Для того, чтобы рассчитать передаточное отношение конической передачи, требуется учитывать делительные диаметры, число зубьев, а кроме того, предусмотренные углы конусов. В конечном итоге, чтобы получить прочное поступательное движение на практике применяют соединение реечного типа. По конструкции этот механизм состоит из рейки со специальными зубьями, а также шестерни. При использовании реечной передачи обязательно нужно учитывать число зубьев на колесе, диаметр окружности, а также количество зубцов на самой рейке.
Как рассчитать передаточное число
Шестерня и колесо имеют разное количество зубов с одинаковым модулем и пропорциональный размер диаметров. Передаточное число показывает, сколько оборотов совершит ведущая деталь, чтобы провернуть ведомую на полный круг. Зубчатые передачи имеют жесткое соединение. Передающееся количество оборотов в них не меняется. Это негативно сказывается на работе узла в условиях перегрузок и запыленности. Зубец не может проскользнуть, как ремень по шкиву и ломается.
Расчет без учета сопротивления
В расчете передаточного числа шестерен используют количество зубьев на каждой детали или их радиусы.
Где u12 – передаточное число шестерни и колеса;
Z2 и Z1 – соответственно количество зубьев ведомого колеса и ведущей шестерни.
Знак «+» ставится, если направление вращения не меняется. Это относится к планетарным редукторам и зубчатым передачам с нарезкой зубцов по внутреннему диаметру колеса. При наличии паразиток – промежуточных деталей, располагающихся между ведущей шестерней и зубчатым венцом, направление вращения изменяется, как и при наружном соединении. В этих случаях в формуле ставится «–».
При наружном соединении двух деталей посредством расположенной между ними паразитки, передаточное число вычисляется как соотношение количества зубьев колеса и шестерни со знаком «+». Паразитка в расчетах не участвует, только меняет направление, и соответственно знак перед формулой.
Обычно положительным считается направление движения по часовой стрелке. Знак играет большую роль при расчетах многоступенчатых редукторов. Определяется передаточное число каждой передачи отдельно по порядку расположения их в кинематической цепи. Знак сразу показывает направление вращения выходного вала и рабочего узла, без дополнительного составления схем.
Вычисление передаточного числа редуктора с несколькими зацеплениями – многоступенчатого, определяется как произведение передаточных чисел и вычисляется по формуле:
Зубчатое зацепление жесткое. Детали не могут проскальзывать относительно друг друга, как в ременной передаче и менять соотношение количества вращений. Поэтому на выходе обороты не изменяются, не зависят от перегруза. Верным получается расчет скорости угловой и количества оборотов.
КПД зубчатой передачи
Для реального расчета передаточного отношения, следует учитывать дополнительные факторы. Формула действительна для угловой скорости, что касается момента силы и мощности, то они в реальном редукторе значительно меньше. Их величину уменьшает сопротивление передаточных моментов:
- трение соприкасаемых поверхностей;
- изгиб и скручивание деталей под воздействием силы и сопротивление деформации;
- потери на шпонках и шлицах;
- трение в подшипниках.
Для каждого вида соединения, подшипника и узла имеются свои корректирующие коэффициенты. Они включаются в формулу. Конструктора не делают расчеты по изгибу каждой шпонки и подшипника. В справочнике имеются все необходимые коэффициенты. При необходимости их можно рассчитать. Формулы простотой не отличаются. В них используются элементы высшей математики. В основе расчетов способность и свойство хромо-никелевых сталей, их пластичность, сопротивление на растяжение, изгиб, излом и другие параметры, включая размеры детали.
Что касается подшипников, то в техническом справочнике, по которому их выбирают, указаны все данные для расчета их рабочего состояния.
При расчете мощности, основным из показателей зубчатых зацепления является пятно контакта, оно указывается в процентах и его размер имеет большое значение. Идеальную форму и касание по всей эвольвенте могут иметь только нарисованные зубья. На практике они изготавливаются с погрешностью в несколько сотых долей мм. Во время работы узла под нагрузкой на эвольвенте появляются пятна в местах воздействия деталей друг на друга. Чем больше площадь на поверхности зуба они занимают, тем лучше передается усилие при вращении.
Все коэффициенты объединяются вместе, и в результате получается значение КПД редуктора. Коэффициент полезного действия выражается в процентах. Он определяется соотношением мощности на входном и выходном валах. Чес больше зацеплений, соединений и подшипников, тем меньше КПД.
Определения
Эти термины важно запомнить. Ведущая ветвь ремня — набегает на ведущий шкив
При работе передачи растягивается
Ведущая ветвь ремня — набегает на ведущий шкив. При работе передачи растягивается.
Ведомая ветвь ремня — сходит с ведущего ремня и набегает на ведомый. При работе передачи расслабляется.
Межосевое (межцентровое) расстояние – кратчайшее расстояние между осями шкивов.
Натяжной ролик (леникс, от нем. lenix, lenixrolle — натяжной ролик) – элемент ремённой или цепной передачи; свободно вращающееся на оси колесо (шкив, звездочка, ролик), которое используется для регулирования натяжения ремня или цепи. Например, используется в тракторах для натяжения гусениц или в двигателе автомобиля для натяжения ремня ГРМ (газораспределительного механизма).
Пассик (от польского pasek — ремешок) – исторически вошедшее в наш оборот название приводного ремня круглого сечения. Слово «пассик» имеет польское происхождение. Его появление в русском словаре связывают с 80-ми годах 20-го века, когда им называли соответствующий элемент в импортном польском магнитофоне. Пассик, как правило, выполнен из резины или других полимерных материалов. Пассики использовались в устройстве протяжного механизма магнитной ленты старого кассетного магнитофона – он хорошо сглаживал рывки от электромотора и предохранял от искажений звука. «Пассики» входят в комплект конструктора Lego WeDo или ресурсного набора Lego MINDSTORMS Education EV3. В общем, всякий пассик — приводной ремень, но не каждый приводной ремень – пассик.
Приводной ремень – гибкий замкнутый элемент (ремень) для передачи вращения между двумя шкивами. Вращение передается за счет силы трения (гладкий ремень) или силы зацепления (ремень с зубчиками). Может иметь разную форму: бывают плоские ремни, зубчатые ремни, клиновидные ремни.
Ремённая передача (англ. belt drive)– механизм, предназначенный для передачи вращательного движения с помощью силы трения или зубчатого зацепления замкнутой гибкой связи (ремня) с помощью колес (шкивов), закрепленных на входном и выходном вале.
Угол обхвата – угол прилегания ремня к шкиву.
Шкив – фрикционное (англ. friction — трение) колесо с ободом или канавкой по окружности. Передает или принимает движение от приводного ремня. В отличие от блока, который имеет похожую форму, шкив всегда передавет усилие с оси на ремень, либо принимает усилие с ремня на ось. Блок же всегда свободно вращается на оси и обеспечивает изменение направления движения каната/троса, а также изменяет прикладываемую силу.
Как рассчитать передаточное число
Шестерня и колесо имеют разное количество зубов с одинаковым модулем и пропорциональный размер диаметров. Передаточное число показывает, сколько оборотов совершит ведущая деталь, чтобы провернуть ведомую на полный круг. Зубчатые передачи имеют жесткое соединение. Передающееся количество оборотов в них не меняется. Это негативно сказывается на работе узла в условиях перегрузок и запыленности. Зубец не может проскользнуть, как ремень по шкиву и ломается.
Расчет без учета сопротивления
В расчете передаточного числа шестерен используют количество зубьев на каждой детали или их радиусы.
u12 = ± Z2/Z1 и u21 = ± Z1/Z2,
Где u12 – передаточное число шестерни и колеса;
Z2 и Z1 – соответственно количество зубьев ведомого колеса и ведущей шестерни.
Знак «+» ставится, если направление вращения не меняется. Это относится к планетарным редукторам и зубчатым передачам с нарезкой зубцов по внутреннему диаметру колеса. При наличии паразиток – промежуточных деталей, располагающихся между ведущей шестерней и зубчатым венцом, направление вращения изменяется, как и при наружном соединении. В этих случаях в формуле ставится «–».
При наружном соединении двух деталей посредством расположенной между ними паразитки, передаточное число вычисляется как соотношение количества зубьев колеса и шестерни со знаком «+». Паразитка в расчетах не участвует, только меняет направление, и соответственно знак перед формулой.
Обычно положительным считается направление движения по часовой стрелке. Знак играет большую роль при расчетах многоступенчатых редукторов. Определяется передаточное число каждой передачи отдельно по порядку расположения их в кинематической цепи. Знак сразу показывает направление вращения выходного вала и рабочего узла, без дополнительного составления схем.
Вычисление передаточного числа редуктора с несколькими зацеплениями – многоступенчатого, определяется как произведение передаточных чисел и вычисляется по формуле:
u16 = u12×u23×u45×u56 = z2/z1×z3/z2×z5/z4×z6/z5 = z3/z1×z6/z4
Зубчатое зацепление жесткое. Детали не могут проскальзывать относительно друг друга, как в ременной передаче и менять соотношение количества вращений. Поэтому на выходе обороты не изменяются, не зависят от перегруза. Верным получается расчет скорости угловой и количества оборотов.
КПД зубчатой передачи
Для реального расчета передаточного отношения, следует учитывать дополнительные факторы. Формула действительна для угловой скорости, что касается момента силы и мощности, то они в реальном редукторе значительно меньше. Их величину уменьшает сопротивление передаточных моментов:
- трение соприкасаемых поверхностей;
- изгиб и скручивание деталей под воздействием силы и сопротивление деформации;
- потери на шпонках и шлицах;
- трение в подшипниках.
Для каждого вида соединения, подшипника и узла имеются свои корректирующие коэффициенты. Они включаются в формулу. Конструктора не делают расчеты по изгибу каждой шпонки и подшипника. В справочнике имеются все необходимые коэффициенты. При необходимости их можно рассчитать. Формулы простотой не отличаются. В них используются элементы высшей математики. В основе расчетов способность и свойства хромоникелевых сталей, их пластичность, сопротивление на растяжение, изгиб, излом и другие параметры, включая размеры детали.
Что касается подшипников, то в техническом справочнике, по которому их выбирают, указаны все данные для расчета их рабочего состояния.
При расчете мощности, основным из показателей зубчатых зацепления является пятно контакта, оно указывается в процентах и его размер имеет большое значение. Идеальную форму и касание по всей эвольвенте могут иметь только нарисованные зубья. На практике они изготавливаются с погрешностью в несколько сотых долей мм. Во время работы узла под нагрузкой на эвольвенте появляются пятна в местах воздействия деталей друг на друга. Чем больше площадь на поверхности зуба они занимают, тем лучше передается усилие при вращении.
Все коэффициенты объединяются вместе, и в результате получается значение КПД редуктора. Коэффициент полезного действия выражается в процентах. Он определяется соотношением мощности на входном и выходном валах. Чем больше зацеплений, соединений и подшипников, тем меньше КПД.
Типы главной передачи по виду зубчатого соединения
Если разделить типы главных передач, тогда можно выделить:
- цилиндрическую;
- коническую;
- червячную;
- гипоидную;
Цилиндрическая главная передача применяется на легковых переднеприводных автомобилях с поперечным расположением двигателя и коробки передач. Ее передаточное число находится в пределах 3,5-4,2.
Шестерни цилиндрической главной передачи могут быть прямозубыми, косозубыми и шевронными. Цилиндрическая передача имеет высокий КПД (не менее 0.98) но она уменьшает дорожный просвет и довольно шумная.
Коническая главная передача применяется на заднеприводных автомобилях малой и средней грузоподъемности с продольным расположением ДВС, где габаритные размеры не имеют значения.
Оси шестерней и колеса такой передачи пересекаются. В этих передачах применяют прямые, косые или криволинейные (спиральные) зубья. Снижение шума достигается применением косого или спирального зуба. КПД главной передачи со спиральным зубом достигает 0.97-0.98.
Червячная главная передача может быть как с нижним, так и с верхним расположением червяка. Передаточное число такой главной передачи находится в пределах от 4 до 5.
По сравнению с другими типами передач, червячная передача компактнее и менее шумная, но имеет низкий КПД 0.9 — 0.92. В настоящее время применяется редко по причине трудоемкости изготовления и дороговизны материалов.
Гипоидная главная передача представляет собой один из популярных видов зубчатого соединения. Эта передача своего рода компромисс между конической и червячной главной передачей.
Передача применяется на заднеприводных легковых и грузовых автомобилях. Оси шестерней и колеса гипоидной передачи не пересекаются, а скрещиваются. Сама передача может быть как с нижним, так и с верхним смещением.
Главная передача с нижним смещением позволяет расположить ниже карданную передачу. Следовательно, смещается и центр тяжести автомобиля, повысив его устойчивость при движении.
Гипоидная передача по сравнению с конической имеет большую плавность, бесшумность, меньшие габариты. Ее применяют на легковых автомобилях с передаточным числом от 3,5-4,5, и на грузовых вместо двойной главной передачи с передаточным числом от 5-7 . При этом КПД гипоидной передачи составляет 0.96-0.97.
При всех своих плюсах гипоидная передача имеет один недостаток – порог заклинивания при обратном ходе автомобиля (превышение расчетных оборотов)
По этой причине водителю необходимо проявлять особую осторожность при выборе скорости движения задним ходом
3.4. Редуктор с двумя внутренними зацеплениями (рис. 3.Б)
Передаточное
отношение такого редуктора определяется
по формуле:
=
. (3.22)
Найдем зависимость
чисел зубьев Z1
и Z4
от
при условии обеспечения минимальных
радиальных размеров (минимальных чисел
зубьев).
Минимальное число
зубьев колес с внутренними зубьями
равно 85, а находящихся в зацеплении с
ними сателлитов равно 20.
Минимальная
разность чисел зубьев колес, находящихся
во внутреннем зацеплении, равно 8.
Обозначим разности чисел зубьев Z1-Z2=D
и
Z4-Z1=C.
Тогда Z2=Z1-D
и Z3=Z4-D.
После подстановки в (3.22) величин Z2
и Z3
получим:
=
, (3.23)
откуда
D
=
.
Здесь
– абсолютное значение передаточного
отношения.
Минимальное
передаточное отношение при Z2=20
из (3.23) получается равным 26,5 , а максимальное
при D=8
равно 828.
Задаваясь разностью
С=Z4-Z1
в пределах от 1 до 4, можно при известном
передаточном отношении
найти D,
а затем и числа зубьев всех остальных
колес при Z1=85:
Z2=Z1-D,
(3.24)
Z3=Z2+C=Z1-D+C,
(3.25)
Z4=Z1+C.
(3.26)
Если при этом
получится Z2<20,
то нужно увеличить С. Для предотвращения
многовариантных расчетов можно
воспользоваться графиком (рис.4),
построенным по результатам вычислений
при различных числах зубьев сателлитов
Z2
с использованием (3.23) при передаточных
отношениях
=10…70.
Число зубьев
сателлита Z2
и разность С должны быть выбраны по
возможности наименьшими, т.к. при этом,
во-первых, уменьшается масса колес
передачи и, во-вторых, появляется
возможность создания многосателлитной
передачи. Так, например, при U=30
целесообразно принять С=1 и с помощью
графика найти Z2=22.
Тогда при Z1=85
получим Z3=22+1=23
и Z4=85+1=86.
Передаточное отношения при таких числах
зубьев составит величину
=8622/8622-8523=-30.03
что на 0.1% отличается от заданного.
Рис.4. Выбор числа
зубьев Z2
для различных
значений Uпл=10…70
и С=1…4
Количество
сателлитов можно определить из условия
соседства сателлитов второго ряда
колес передачи (рис.5), т.е. исходя из
чисел зубьев Z3
и Z4,
т.к. Z4>Z2.
В соответствии
со схемой зацепления, показанной на
рис.5, условие соседства сателлитов
примет вид:
где k-
число сателлитов.
Подставив сюда z3 из (3.25) и z4 из (3.26) и несколько преобразуя, получим:
sin
> –1, (3.28)
откуда
можно найти максимальное количество
сателлитов
kmax=
= . (3.29)
Рис .5. К определению
условия соседства сателлитов
На рис.6. представлены
результаты расчета максимального числа
сателлитов по формуле ( 3.29 ) для передач
с
=10…70
при разных значениях
с = 1…4. Как видно из анализа рис.6, с
увеличением передаточного отношения
максимально возможное число сателлитов
уменьшается и, например, для
=60
значение “C”
допускается только равным 1 и кmax= 3, а для С
≥ 2 и
≥ 40 возможен только один сателлит, и
водило превращается в кривошип.
Рис.6. Выбор
максимального числа сателлитов для
различных
значений Uпл=10…70
и С=1…4
Общее определение
Значение передаточного отношения у кинематических схем рассчитывается по стандартному математическому выражению. Результат получается при проведении математической операции деления значения угловой скорости ведущего вала или шестерёнки, на такой же параметр ведомого вала. Вместо этих значений используют отношение их частот вращения.
Современные кинематические схемы реализованы с использованием следующих механических соединений:
- с зубчатым зацеплением (в разных вариациях);
- червячных;
- фрикционных соединений;
- с помощью цепей;
- посредством специальных ремней;
- планетарных соединений.
Передача вращения основана на двух физических принципах: с помощью силы трения, с использованием механизмов зацепления. В зависимости от решаемой задачи механизмы изготавливаются с замедлением и ускорением. Первые называются редукторами, вторые — мультипликаторами. Обе разновидности бывают одноступенчатыми, двухступенчатыми, многоступенчатыми.
Пространственное расположение осей определяет следующие виды механизмов:
- параллельные (в них оба вала расположены параллельно друг относительно друга);
- пересекающиеся (зацепление происходит посредством пересечения);
- перекрещивающиеся механизмы (у них валы вступают в перекрестное зацепление).
Все типы механизмов бывают замедляющие и ускоряющие движение. Наиболее частое применение замедляющих конструкций объясняется более высокой скоростью используемых двигателей и необходимостью увеличить мощность выходного элемента кинематической схемы.
Таблица передаточных отношений является сводным документом. В ней приведены значения основных технических характеристик всех типов кинематических соединений.
В сводной таблице можно найти зависимость значения передаточного числа от допустимой мощности, которая передаётся конкретным видом соединения.
Назначение, конструктивные особенности
Основная задача этого элемента сводится к изменению крутящего момента перед подачей его на привод колес. То же делает и коробка передач, но у неё существует возможность изменения передаточных чисел за счет ввода в зацепление тех или иных шестерен. Несмотря на наличие в конструкции автомобиля КПП, на выходе из нее крутящий момент небольшой, а скорость вращения выходного вала – высокая. Если передать вращение напрямую на ведущие колеса, то возникшая нагрузка «задавит» двигатель. В общем, авто просто не сможет сдвинуться с места.
Главная передача автомобиля обеспечивает повышение крутящего момента и снижение скорости вращения. Но в отличие от КПП передаточное число у нее фиксированное.
Расположение главной передачи на примере обычной МКПП
Представляет собой эта передача на легковом авто обычный шестеренчатый одноступенчатый редуктор постоянного зацепления, состоящий из двух шестерен разного диаметра. Ведущая шестерня небольшая по размерам и связана она с выходным валом КПП, то есть вращение подается на нее. Ведомая же шестерня значительно больше по размерам и получаемое вращение она подает на приводные валы колес.
Передаточное число является соотношением количества зубьев шестерен редуктора. Для легковых авто этот параметр находится в диапазоне 3,5-4,5, а для грузовиков он достигает 5-7.
Чем больше передаточное число (больше количество зубьев ведомой шестерни относительно ведущей), тем выше крутящий момент, подаваемый на колеса. При этом тяговое усилие будет больше, но максимальная скорость ниже.
Передаточное число главное передачи подбирается исходя из эксплуатационных показателей силовой установки, а также других узлов трансмиссии.
Устройство главной передачи напрямую зависит от конструктивных особенностей самого автомобиля. Этот редуктор может быть, как отдельным узлом, установленным в своем картере (заднеприводные модели), так и входить в конструкцию КПП (авто с передним приводом).
Главная передача в заднеприводном автомобиле
Что касается некоторых полноприводных авто, то у них может использоваться разная компоновка. Если в таком автомобиле расположение силовой установки – поперечное, то главная передача передней оси входит в конструкцию КПП, а задней располагается в отдельном картере. У автомобиля с продольной компоновкой главные передачи на обоих осях отделены от КПП и раздаточной коробки.
В моделях с отделенной главной передачей, этот редуктор выполняет еще одну задачу – изменяет угол направления вращения на 90 град. То есть выходной вал КПП и приводные валы колес имеют перпендикулярное расположение.
Расположение главной передачи передней оси Audi
В переднеприводных моделях, где главная передача входит в конструкцию КПП, указанные валы имеют параллельное расположение, поскольку менять угол направления не нужно.
В ряде грузовых авто применяются двухступенчатые редукторы. Примечательно, что их конструкция может быть разной, но наибольшее распространение получила так называемая разнесенная компоновка, в которой используется один центральный редуктор и два колесных (бортовых). Такая конструкция позволяет существенно повысить крутящий момент, а соответственно и тяговое усилие на колесах.
Привод легковых автомобилей
Особенность работы редуктора сводится к тому, что он равномерно разделяет вращение на оба приводных вала. При прямолинейном движении такое условие является нормальным. Но при прохождении поворотов колеса одной оси проходят разное расстояние, поэтому необходимо изменение скорости вращения каждого из них. Это входит в задачу дифференциала, используемого в конструкции трансмиссии (он устанавливается на ведомой шестерне). В результате главная передача подает вращение на приводные валы не напрямую, а через дифференциал.
Червячная передача
Необходимость изменения вращательного движения под углом требует создания специального вида систем. К таким конструкциям относится червячная передача. Основной элемент такой передачи может быть цилиндрической формы, глобоидным, эвольвентным, архимедовым винтом. Это зависит от поверхности, на которой расположена резьба, и профиля резьбы.
В качестве параметров, используемых для расчёта передаточного числа подставляемых в выражение, используют существующее количество заходов червячного механизма. Обычно оно варьируется от одного до четырёх. Таблица передаточных отношений для червячной схемы позволяет рассчитать необходимое количество элементов зацепления. Приведенные в этой таблице данные, помогают правильно выбрать соединения для конкретного механизма.
Основными недостатками передачи являются:
- высокая температура нагрева элементов во время передачи вращения;
- наличие эффекта проскальзывания;
- затормаживание и заедание;
- низкий КПД;
- как следствие невысокую надёжность.