Схема электрической цепи реостат
Содержание:
реостат для самодельного сварочника
Я делал себе из кранового сопротивления в виде удобного балластничка с медным ножом (нихромовая «пружина «).Сделал аккуратную подставочку из полосы ,толщиной 1,5- 2 мм и шириной 25-30 мм .Ширина подставочки должна быть такой ,чтобы отверстия крепления кранового сопротивления ложились на перемычки подставки и его можно было прикрутить.Высота подставки должна быть такой , чтоб пружина была от пола сантиметров пять ,не меньше.По краям подставки из той же полосы приварил ушки с отверстиями,чтоб они были повыше пружины.Взял пруток ,диаметром 8 мм ,нарезал по краям резьбу ,и затем натянул на него кембрик по всей длине, не закрывая резьбу,чтоб «нож»,при помощи которого нужно будет регулировать сварочный ток,был изолирован от подставки . Изготовление «ножа «.Брал полосу ,из которой делал подставку ,длиной сантиметров двадцать ,приклепывал к ней такую же полосу ,но медную.Затем сверлил по краям два отверстия на 10 — в одно отверстие вставляется изолированный пруток на 8,по которому и перемещается «нож» (пруток крепится в ушках ),во-второе ,со стороны металлической пластины вставляется болт на 10 и приваривается (длина болта 40мм ).На болт затем одевается и прикручивается клема кабеля электрододержателя.Затем брал эту металл-медную пластину и такую же по ширине , но сантиметра на четыре больше диаметра пружины , медную, прикладывал одну к другой и сверлил в них отверстия на» 6″ под болт на «6».(У медных пластиночек немножко отгибаются кромки мм по 4 ,чтобы лучше входили витки пружины ).Вставляем болтики на «6» ,длиной около 40 мм ,на них одеваем пружинки ,на пружинки сверху шайбочки и прикручиваем гайками .Но так , чтобы потом «нож» сидел плотно на витке пружины.Обычно на пружинах есть припаянные латунью медные ушки .К одному из ушек крепим кабель (клемы на обоих концах) 50см ,второй конец потом крепится к болту на сварочнике.Вот и все. …Ага ,чуть не забыл. Чтоб не крепить кабеля и балластник гайками , постоянно таская с собой ключь ,сделал еще барашки .А барашки взял с «КРАЗовского » мотора-есть там такие (прошу прощения ,я не водитель , так что не знаю как правильно и выразиться ,но я думаю вы поймете о чем речь).Резьба в них мелкая на 10.Поэтому я брал сверло ,аккуратно зажимал в тиски,так как пластмасса хрупкая и может треснуть,засверливал поглубже ,но так чтоб сверло не вышло наружу.Это делалось для того, чтобы хватило хода для метчика на «10» .Перерезал резьбу под болт ,и получались удобные барашки.Три штучки их надо.Вот теперь все.
Как рассчитать мощность резистора в схеме
Чтобы рассчитать мощность резисторов в схеме, кроме сопротивления (R) необходимо знать силу тока (I). На основании этих данных можно рассчитать мощность. Формула обычная: P = I² * R. Квадрат силы тока умножить на сопротивление. Силу тока подставляем в Амперах, сопротивление — в Омах.
Схема последовательного соединения резисторов
Для примера рассмотрим схему на рисунке выше. Последовательное соединение сопротивлений характерно тем, что через каждый отдельный резистор цепи протекает одинаковый ток. Значит мощность сопротивлений будет одинаковой. Последовательно соединенные сопротивления просто суммируется: 200 Ом + 100 Ом + 51 Ом + 39 Ом = 390 Ом. Ток рассчитаем по формуле: I = U/R. Подставляем данные: I = 100 В / 390 Ом = 0,256 А.
По расчетным данным определяем суммарную мощность сопротивлений: P = 0,256² * 390 Ом = 25,549 Вт. Аналогично рассчитывается мощность каждого из резисторов. Например, рассчитаем мощность резистора R2 на схеме. Ток мы знаем, его номинал тоже. Получаем: 0,256А² * 100 Ом = 6,55 Вт. То есть, мощность этого резистора должна быть не ниже 7 Вт. Брать с более низкой мощностью точно не стоит — быстро перегорит. Если позволяет конструктив прибора, то можно поставить резистор большей мощности, например, на 10 Вт.
Есть резисторы серии МЛТ, в которых мощность рассеивания тепла указана сразу после названия серии без каких-либо букв. В данном случае — МЛТ-2 означает, что мощность этого экземпляра 2 Вт, а номинал 6,8 кОм.
При параллельном подключении расчет аналогичен. Нужно только правильно рассчитать ток, но это тема другой статьи. А формула расчета мощности резистора от типа соединения не зависит.
Упражнение 1. Реостат
Р
ассмотрим
электрическую цепь (рис.5), в которой
реостат работает как регулятор тока
(собственно реостат). В этом случае
реостат включается в цепь последовательно.
Если внутреннее сопротивление вольтметра
очень велико, а амперметра мало по
сравнению с сопротивлением нагрузки,
ток в цепи будет таким:
,
(1)
где R
– сопротивление всего реостата,
Rl
– сопротивление действующего участка
AD реостата длиной l,
RH
– сопротивление
нагрузки,
r –
внутреннее сопротивление источника
тока, Е – ЭДС источника тока.
При
перемещении движка реостата D
от А к В сопротивление Rl
будет изменяться от нуля до наибольшего
R, а ток в цепи –
от наибольшего
до наименьшего
значения.
Найдем
так называемую кратность регулирования
тока K, которая, по
определению, есть отношение наибольшего
тока к наименьшему из их диапазона его
изменения:
.
(2)
Из
формулы (2) видно, что пределы регулирования
тока реостата тем больше, чем больше
отношение R/(RH+r),
т.е. чем больше сопротивление реостата
по сравнению с сопротивлением нагрузки
(внутреннее сопротивление источника
тока r, как правило,
значительно меньше RH).
Если
в электрическую цепь включен регулирующий
элемент (реостат), то хочется, чтобы
пределы регулирования тока были как
можно больше. Однако возможность
получения больших K
для реостата ограничена. Чем больше
сопротивление реостата, тем меньше его
допустимый (номинальный) рабочий ток.
Включив такой реостат в цепь с мощным
источником тока, можно сжечь обмотку
реостата. В самом деле, если его движок
D находится вблизи
клеммы А, сила тока в цепи определяется,
в основном, величиной сопротивления
нагрузки и если этот ток окажется больше
номинального тока реостата, то последний
будет испорчен. Кроме того, в случае
RRH
при приближении движка D
к клемме А скачки изменение тока
становятся всё бóльшими. Итак, при выборе
реостата приходится учитывать и выполнять
два условия: 1)сопротивление реостата
должно быть больше сопротивления
нагрузки RRH,
2) наибольший ток нагрузки не должен
превышать номинальный (допустимый для
нормальной работы) ток реостата IнбIном.
Описание
установки. Все приборы, необходимые
для проведения измерений, размещены на
лабораторной панели: 1)реостат с линейкой
(сопротивление R=1200
Ом, номинальный ток 0,5 А), 2)два вольтметра
с пределами измерения 15 В, 3)два
миллиамперметра с пределами 75 мА и 1,5
мА. Два резистора, выполняющие роль
нагрузки, размещены в подвале панели.
Измерения.
Работа реостата в качестве регулятора
тока изучается при двух нагрузках:
1)RH1=120
Ом (условие RHR),
2) RH2=12000
Ом (RHR).
В первом
случае последовательно с нагрузкой
включается миллиамперметр на 75 мА, во
втором – на 1,5 мА.
1.Соберите
цепь с нагрузкой RH1=120
Ом согласно схеме (рис.5). Тумблер Вк
во время сборки должен быть в разомкнутом
положении. Постоянное напряжение от
лабораторной сети подведено к клеммам
с обозначением 6
В.
2.Предложите
преподавателю проверить правильность
сборки цепи.
3.Внимание!
Прежде чем включить тумблер Вк,
установите на реостате наибольшее
сопротивление (движок D
перемещен к клемме В). 4.Включите
напряжение питания тумблером Вк.
Перемещая движок реостата в сторону
уменьшения сопротивления, снимите
зависимость напряжения на входе U,
напряжения на нагрузке UH
итока в цепи I (он
же ток нагрузки) от расстояния l
между движком реостата D
и клеммой А, отсчитывая его по
линейке
Такие измерения следует провести
от 42 см до нуля примерно через равные
промежутки 4…5 см. Результаты запишите
в табл.1
4.Включите
напряжение питания тумблером Вк.
Перемещая движок реостата в сторону
уменьшения сопротивления, снимите
зависимость напряжения на входе U,
напряжения на нагрузке UH
итока в цепи I (он
же ток нагрузки) от расстояния l
между движком реостата D
и клеммой А, отсчитывая его по
линейке. Такие измерения следует провести
от 42 см до нуля примерно через равные
промежутки 4…5 см. Результаты запишите
в табл.1.
5.Проведите
такие же измерения со второй нагрузкой
RH2=12000
Ом.
Таблица 1
Нагрузка |
Нагрузка |
||||||
l |
I |
UH |
U |
l |
I |
UH |
U |
Обработка
результатов. 1.По данным табл.1 постройте
отдельно для каждой нагрузки графики
зависимости тока I и обоих напряжений Uи UHот длины рабочего участка реостата
l.
Виды резисторов
Резистор – инертный (пассивный) элемент цепи, у которого сопротивление может быть как постоянным, так и переменным. Это зависит от его конструкции. Он применяется для регулирования силы тока и напряжения в цепях, рассеивания мощности и иных ограничений. Дословный перевод с английского слова «резистор» – сопротивляюсь.
Классификацию резисторов можно провести по следующим критериям:
- назначение элемента;
- тип изменения сопротивления;
- материал изготовления;
- вид проводника в элементе;
- ВАХ – вольт-амперная характеристика;
- способ монтажа.
Устройства делятся на элементы общего и специального назначения. У специальных деталей повышенные характеристики сопротивления, частоты, рабочего напряжения или особые требования к точности.
Тип изменения сопротивления делит их на постоянные и переменные. Переменные резисторы конструктивно отличаются не только от элементов, имеющих постоянное сопротивление, но и между собой. Они различны по конструкции: бывают регулировочные и подстроечные.
Регулировочные элементы переменного типа предназначены для частого изменения сопротивления. Это входит в процесс работы схемы устройства.
Подстроечный тип предназначен для того, чтобы выполнить подстройку и регулировку схемы при первичном запуске. После этого изменение положения регулятора не выполняют.
При изготовлении резистивных тел (рабочей поверхности) используются такие материалы, как:
- графитовые смеси;
- металлопленочные (окисные) ленты;
- проволока;
- композиционные компоненты.
Особое место занимают в этом ряду интегральные элементы. Это резисторы, выполненные в виде p-n перехода, который представляет собой зигзагообразный канал, интегрируемый в кристалл микросхемы.
Внимание! Интегральные элементы всегда отличаются повышенной нелинейностью своей ВАХ. Поэтому они применяются там, где использование других типов не представляется возможным. Вид вольт-амперной характеристики делит рассматриваемые элементы на линейные и нелинейные
Особенность нелинейности заключается в том, что компонент меняет своё сопротивление в зависимости от следующих характеристик:
Вид вольт-амперной характеристики делит рассматриваемые элементы на линейные и нелинейные. Особенность нелинейности заключается в том, что компонент меняет своё сопротивление в зависимости от следующих характеристик:
- напряжения (варисторы);
- температуры (терморезисторы);
- уровня магнитного поля (магниторезисторы);
- величины освещённости (фоторезисторы);
- коэффициента деформации (тензорезисторы).
Нелинейность вольт-амперной характеристики расширило возможности их применения.
Способ монтажа может быть:
- печатным;
- навесным;
- интегрированным.
При печатном монтаже выводы детали вставляются в отверстие на плате, после чего припаиваются к контактной дорожке панели. Такой способ установки автоматизирован, и пайка происходит путём погружения контактных площадок в ванну с припоем.
Навесной монтаж, в большинстве своём, ручной. Выводы соединяемых деталей сначала скручиваются между собой, потом спаиваются для улучшения контакта. Сама пайка не предназначена для выдерживания механических нагрузок.
Интегрированный монтаж проводится в процессе изготовления кристаллов микросхем.
Как включается реостат в цепь
Во-первых, этот прибор в электрическую цепь включается только последовательно. Во-вторых, один из контактов подключается к ползуну, с помощью которого и регулируется величина тока в цепи. Но необходимо отметить, что этот управляющий элемент можно использовать и для регулировки напряжения в электрической цепочке. Здесь может быть использовано несколько схем с одним сопротивлением или двумя. Понятно, что чем меньше элементов в электрической цепочке, тем проще она.
Реостаты – это универсальные приборы. Их сегодня используют не только для управления силой тока и напряжением. К примеру, в телевизорах они установлены для увеличения или уменьшения звука. Да и переключение каналов косвенно связано с ними же.
И еще один момент. В электрических схемах обозначение этих приборов вот такое:
или такое
На первом рисунке более подробно расписана схема подключения, где красный прямоугольник – это и есть проводник, накрученный на керамическую основу. Синяя линия – это контакт, через который подводится питающий провод. Зеленная стрелка – это ползун. Она направлена влево, что говорит о том, что перемещая ползунок влево, мы уменьшаем сопротивление проводника. И, наоборот, перемещаем контакт вправо, увеличиваем сопротивление.
Рисунок второй более упрощенный. На нем всего лишь прямоугольник, показывающий наличие сопротивления, и стрелка, которая показывает, что этот показатель можно изменять.
Конечно, вся эта информация касается простейших элементов. Но необходимо отметить, что реостаты могут быть разными, все зависит от того места, куда они должны быть установлены. Есть различия и по токопроводящему материалу, который лежит в основе. К примеру, это может быть уголь, металлы, жидкости и керамика. К тому же процесс охлаждения производится воздушным путем или при помощи жидкостей, и это может быть не только вода.
Что такое резистор
Резистор – это сопротивление. Он является пассивным элементом в цепи и способен только уменьшать ток. Происхождение названия идет от латинского «resisto», что дословно на русском языке означает «сопротивляюсь».
Предназначен проводник для того, чтобы преобразовывать напряжение в силу тока и наоборот, он поглощает часть энергии и ограничивает ток. Основное применение приходится на электрические и электронные устройства.
Также есть два вида полупроводников:
- линейные, сопротивление у которых от тока и напряжения не зависит;
- нелинейные, способные изменить сопротивление в зависимости от значений протекающего тока и напряжения.
Основным параметром резисторов является номинальное напряжение.
Как выглядит
Элементы могут быть проволочные и непроволочные. Последние отлично выполнят свою функцию в высокочастотной цепи, внешний вид и процесс их изготовления отличаются. Различают резисторы общего применения и специального. Первые не превышают 10 мегаом, а вторые способны работать под напряжением 600 вольт и выше. Внешним видом они тоже отличаются. На фото ниже легко увидеть разницу и понять, как выглядит резистор.
Разница во внешнем виде и размерах
Из чего состоит
Намотав проволоку на каркас из керамики или прессованного порошка получится проволочный резистор. При этом сама проволока должна быть из нихрома, константана или манганина. Так получится создать полупроводник с высоким удельным сопротивлением.
Непроволочные элементы изготовлены на основе диэлектрика из проводящих смесей и пленок. Разделяют тонкослойные и композиционные, но все они имеют повышенную точность и стабильность в работе.
Регулировочные и подстроечные элементы представляют собой кольцевую резистивную пластину по которой движется бегунок. Он скользит по кругу, меняя расстояние точек на резистивном слое, в результате сопротивление меняется. Следует понять, что же делает резистор для прибора.
Для чего используется
Для чего нужен резистор? При помощи этой детали в электрической цепи можно ограничить количество проводимого тока, в результате правильно подобранной детали легко получить необходимую величину. Чем выше сопротивление, тем ниже будет на выходе сила тока, при условии стабильного напряжения.
Как работают резисторы понять легко, они могут использоваться в качестве преобразователя напряжения в ток и наоборот, в измерительных аппаратах их применяют для деления напряжения, а также они могут понизить или полностью устранить радиопомехи.
Обозначение на схемах
В России и Европе резистор на схеме обозначаются прямоугольником, размерами 4*10мм. Для определения значений сопротивления есть условные обозначения. Постоянный элемент на схеме обозначается следующим образом:
Обозночения постоянных элементов на схеме
Переменные, в том числе подстроечные, а также нелинейные следующим образом:
Обозначения переменных проводников
Переменный резистор
Очень часто возникает необходимость изменять величину тока и напряжения при помощи изменения номинала резистора. Выполнить эту задачу поможет простой радиоэлемент, который называется реостатом. Он широко применяется для регулировки уровня громкости, увеличения напряжения на лабораторном источнике питания и т. д. Переменные резисторы, применяемые в радиотехнике, отличаются от лабораторных конструкциий. Однако принцип действия этих радиоэлементов одинаков. Части устройства очень похожи по своему предназначению. Например, ползунковый механизм, который применяется для регулировки тока.
Виды и устройство реостатов
Реостаты классифицируются по устройству и способу применения. По устройству реостаты делятся на 4 типа: проволочный, ползунковый, жидкостный и ламповый. Первый тип переменного резистора состоит из проволоки (материала с высоким удельным сопротивлением) и корпуса-изолятора. Проволочный проводник проходит через контакты, при соединении с которыми можно получить необходимую величину сопротивления.
Ползунковый реостат состоит тоже из проволоки с высоким удельным сопротивлением, корпуса-диэлектрика (на него она намотана) и ползунка. При передвижении ползунка происходит уменьшение или увеличение величины электросопротивления. Устройство применяется в лабораториях при проектировании различных электрических приборов, а также для проведения опытов в области физики или химии. Кроме того, модернизированная версия применяется в различной радиоаппаратуре.
Не слишком распространенным типом является модель жидкостного переменного резистора. Она имеет следующее строение: бак с электролитическим раствором и подвижные электроды.
Реостат бывает еще и ламповым. Он включает в свой состав набор ламп накаливания, которые соединены параллельно. Если изменить количество включенных ламп, то можно изменить его сопротивление. Однако устройство имеет один существенный недостаток: зависимость величины электрической проводимости от температуры нитей накаливания. По способу применения переменные резисторы следует классифицировать таким образом:
- пусковые;
- пускорегулирующие;
- балластные;
- для возбуждения;
- потенциометры.
Первый тип предназначен для плавного запуска электродвигателей. Пускорегулирующие переменные резисторы позволяют плавно запускать электрические двигатели постоянного тока, а также поддерживают регулировку величины силы тока. Балластные следует применять в электрических цепях для регулировки нагрузочной способности генератора электроэнергии. Они создают необходимую величину сопротивления в сети. Реостаты возбуждения используют в электрических машинах для поглощения лишней энергии.
Потенциометр предназначен для регулировки величины напряжения. Реостат устроен следующим образом: три клеммы позволяют получить от источника питания с фиксированным значением напряжения разные значения его величины. Например, понижающий трансформатор со значением напряжения на вторичной обмотке, равным 36 В. При использовании 2 транзисторов, диодного моста и реостата можно получить ряд напряжений от 0 до 34 В (2 В — потери при выпрямлении диодным мостом). Эта особенность позволяет делать и выпускать универсальные делители напряжения.
Схема и принцип работы
Обозначение реостата на схеме осуществляется в виде обыкновенного резистора, но со стрелкой, показывающей непостоянное значения сопротивления радиокомпонента. Принцип работы реостата довольно простой и основан на зависимости величины силы тока от величины сопротивления. Проводник, который находится на корпусе-изоляторе, подключен в электрическую цепь.
Реостат может выглядеть, как корпус-изолятор, из которого выведен специальный регулятор величины сопротивления. Однако некоторые модели, которые применяются в лабораториях, могут быть открытого типа. Они предназначены для демонстрации принципа действия устройства.
Электроток протекает по пути наименьшего сопротивления. Следовательно, ползунком можно регулировать протекание тока. Если проводник (материал с высоким удельным сопротивлением) задействован полностью, то, значит, и величина сопротивления будет максимальной. В случае, когда ползунок находится посередине проводника, сопротивление реостата равно R / 2. Подключение в электрическую цепь потенциометра, как и любого типа реостата, осуществляется последовательно.
Подстроечный резистор.
Только для начала уточним терминологию… По сути подстроечный резистор является переменным, ведь его сопротивление можно изменить, но давайте условимся, что при обсуждении подстроечных резисторов под переменными резисторами мы будем иметь ввиду те, которые мы уже обсудили в этой статье (поворотные, ползунковые и т. д). Это упростит изложение, поскольку мы будем противопоставлять эти типы резисторов друг другу. Да и, к слову, в литературе зачастую под подстроечными резисторами и переменными понимаются разные элементы цепи, хотя, строго говоря, любой подстроечный резистор также является и переменным в силу того факта, что его сопротивление можно изменить.
Итак, отличие подстроечных резисторов от переменных, которые мы уже обсудили, в первую очередь, заключается в количестве циклов перемещения ползунка. Если для переменных это число может составлять и 50000, и даже 100000 (то есть ручку громкости можно крутить практически сколько угодно ), то для подстроечных резисторов эта величина намного меньше. Поэтому подстроечные резисторы чаще всего используются непосредственно на плате, где их сопротивление меняется только один раз, при настройке прибора, а при эксплуатации значение сопротивления уже не меняется. Внешне подстроечный резистор выглядит совсем не так как упомянутые переменные:
Из-за небольшой износоустойчивости не рекомендуется применять подстроечные резисторы вместо переменных – в цепях, в которых регулировка сопротивления будет производиться довольно часто.
Обозначение переменных резисторов немного отличается от обозначения постоянных:
Собственно, мы обсудили все основные моменты, касающиеся переменных и подстроечных резисторов, но есть еще один очень важный момент, который невозможно обойти стороной.
Часто в литературе или в различных статьях вы можете встретить термины потенциометр и реостат. В некоторых источниках так называют переменные резисторы, в других в эти термины может вкладываться какой-нибудь иной смысл. На самом деле, корректная трактовка терминов потенциометр и реостат есть только одна. Если все термины, которые мы уже упоминали в этой статье относились,в первую очередь, к конструктивному исполнению переменных резисторов, то потенциометр и реостат – это разные схемы включения (!) переменных резисторов. То есть, к примеру, поворотный переменный резистор может выступать и в роли потенциометра и в роли реостата – все зависит от схемы включения. Начнем с реостата.