От износа стоек и пружин. проверяем состояние пружин подвески. зачем требуется маркировка цветом
Содержание:
- Видео
- Расчет силы упругости
- Свойства пружин подвески
- Особенности работы
- Коэффициент жесткости соединений пружин
- Параллельное соединение пружин
- Коэффициент жесткости цилиндрической пружины
- Основные характеристики
- Типы пружин
- Жёсткость деформируемых тел при их соединении
- Коэффициент Пуассона — WiKi
- Физика
- Видео
- Практические занятия
- Отличия пружин подвески и их маркировка
Видео
Из этого видео вы узнаете, как определить жесткость пружины.
Чем большей деформации подвергается тело, тем значительней в нем возникает сила упругости. Это значит, что деформация и сила упругости взаимосвязаны, и по изменению одной величины можно судить об изменении другой. Так, зная деформацию тела, можно вычислить возникающую в нем силу упругости. Или, зная силу упругости, определить степень деформации тела.
Если к пружине подвешивать разное количество гирек одинаковой массы, то чем больше их будет подвешено, тем сильнее пружина растянется, то есть деформируется. Чем больше растянута пружина, тем большая в ней возникает силы упругости. Причем опыт показывает, что каждая следующая подвешенная гирька увеличивает длину пружины на одну и туже величину.
Так, например, если исходная длина пружины была 5 см, а подвешивание на ней одной гирьки увеличило ее на 1 см (т. е. пружина стала длиной 6 см), то подвешивание двух гирек увеличит ее на 2 см (общая длина составит 7 см), а трех — на 3 см (длина пружины будет 8 см).
Еще до опыта известно, что вес и возникающая под его действием сила упругости находятся друг с другом в прямопропорциональной зависимости. Кратное увеличение веса во столько же раз увеличит силу упругости. Опыт же показывает, что деформация точно также зависит от веса: кратное увеличение веса во столько же раз увеличивает изменения в длине. Это значит, что, исключив вес, можно установить прямопропорциональную зависимость между силой упругости и деформацией.
Если обозначить удлинение пружины в результате ее растяжения как x или как ∆ l ( l 1 – l , где l — начальная длина, l 1 — длина растянутой пружины), то зависимость силы упругости от растяжения можно выразить такой формулой:
В формуле используется коэффициент k . Он показывает, в какой именно зависимости находятся сила упругости и удлинение. Ведь удлинение на каждый сантиметр может увеличивать силу упругости одной пружины на 0,5 Н, второй на 1 Н, а третьей на 2 Н. Для первой пружины формула будет выглядеть как Fупр = 0,5x, для второй — Fупр = x, для третьей — Fупр = 2x.
Коэффициент k называют жесткостью пружины. Чем жестче пружина, тем труднее ее растянуть, и тем большее значение будет иметь k. А чем больше k, тем больше будет сила упругости (Fупр) при равных удлинения (x) разных пружин.
Жесткость зависит от материала, из которого изготовлена пружина, ее формы и размеров.
Единицей измерения жесткости является Н/м (ньютон на метр). Жесткость показывает, сколько ньютонов (сколько сил) надо приложить к пружине, чтобы растянуть ее на 1 м. Или насколько метров растянется пружина, если приложить для ее растяжения силу в 1 Н. Например, к пружине приложили силу в 1 Н, и она растянулась на 1 см (0,01 м). Это значит, что ее жесткость равна 1 Н / 0,01 м = 100 Н/м.
Также, если обратить внимание на единицы измерения, то станет понятно, почему жесткость измеряется в Н/м. Сила упругости, как и любая сила, измеряется в ньютонах, а расстояние – в метрах
Чтобы уровнять по единицам измерения левую и правую части уравнения Fупр = kx, надо в правой части сократить метры (то есть поделить на них) и добавить ньютоны (то есть умножить на них).
Соотношение между силой упругости и деформацией упругого тела, описываемое формулой Fупр = kx, открыл английский ученый Роберт Гук в 1660 году, поэтому это соотношение носит его имя и называется законом Гука.
Упругой деформацией является такая, когда после прекращения действия сил, тело возвращается в свое исходное состояние. Бывают тела, которые почти нельзя подвергнуть упругой деформации, а у других она может быть достаточно большой. Например, поставив тяжелый предмет на кусок мягкой глины, вы измените его форму, и этот кусок сам уже не вернется в исходное состояние. Однако если вы растяните резиновый жгут, то после того, как отпустите его, он вернет свои исходные размеры. Следует помнить, что закон Гука применим только для упругих деформаций.
Формула Fупр = kx дает возможность по известным двум величинам вычислять третью. Так, зная приложенную силу и удлинение, можно узнать жесткость тела. Зная, жесткость и удлинение, найти силу упругости. А зная силу упругости и жесткость, вычислить изменение длины.
Расчет силы упругости
Если растягивать пружину вручную, мы можем заметить: чем больше мы растягиваем пружину, тем сильнее она сопротивляется.
Значит, с удлинением пружины связана сила, которая сопротивляется этому удлинению.
Конечно, если пружина окажется достаточно упругой, чтобы сопротивляться. Например, разноцветная пружина-игрушка (рис. 3), изготовленная из пластмассы, сопротивляться растяжению, увеличивающему ее длину в два раза, практически не будет.
Разноцветная пластмассовая пружина-игрушка растяжению сопротивляется слабо
Закон Гука
Английский физик Роберт Гук, живший во второй половине 17-го века, установил, что сила сопротивления пружины и ее удлинение связаны прямой пропорциональностью. Силу, с которой пружина сопротивляется деформации, он назвал \( F_{\text{упр}} \) силой упругости.
\
Эту формулу назвали законом упругости Гука.
\( F_{\text{упр}} \left( H \right) \) – сила упругости;
\( \Delta L \left(\text{м} \right) \) – удлинение пружины;
\( \displaystyle k \left(\frac{H}{\text{м}} \right) \) – коэффициент жесткости (упругости).
Какие деформации называют малыми
Закон Гука применяют для малых удлинений (деформаций).
Если убрать деформирующую силу и тело вернется к первоначальной форме (размерам), то деформации называют малыми.
Если же тело к первоначальной форме не вернется – малыми деформации назвать не получится.
Как рассчитать коэффициент жесткости
Груз, прикрепленный к концу пружины, растягивает ее (рис. 4). Измерим удлинение пружины и составим силовое уравнение для проекции сил на вертикальную ось. Вес груза направлен против оси, а сила упругости, противодействующая ему – по оси.
Рис. 4. Вес подвешенного на пружине груза уравновешивается силой упругости
Так как силы взаимно компенсируются, в правой части уравнения находится ноль.
\
Подставим в это уравнение выражение для силы упругости
\
Прибавим к обеим частям вес груза и разделим на измеренное изменение длины \(\Delta L \) пружины. Получим выражение для коэффициента жесткости:
\
\(g\) – ускорение свободного падения, оно связано с силой тяжести.
Свойства пружин подвески
Когда торсионы на транспортных средствах заменили на пружины, улучшилась управляемость, . Пружины поддерживают клиренс автомобиля, уменьшая вибрации и удары во время движения транспортного средства.
Чтобы езда была комфортной, необходимо правильно подобрать детали. Если теххарактеристики будут неподходящими, то положительные свойства подвески будут сведены к нулю
Потому важно учитывать следующие параметры:
- диаметр — его увеличение влияет на жёсткость;
- количество витков — при увеличении жёсткость снижается;
- форма.
Зачастую автовладельцы стремятся установить в подвеску более жёсткие детали. Это способствует увеличению чувствительности рулевого колеса к управлению водителем, но сцепление с дорогой ухудшается.
Любители спортивного стиля езды считают, что, напротив, лучше ставить детали с пониженной жёсткостью. Однако такая подвеска может создать проблемы на просёлочных дорогах.
Давайте рассмотрим подробнее, какие пружины лучше установить на ВАЗ.
Особенности работы
Любая пружина представляет собой упругое изделие, которое в процессе эксплуатации подвергается статическим, динамическим и циклическим нагрузкам. Основная особенность этой детали – она деформируется под приложенным извне усилием, а когда воздействие прекращается – восстанавливает свою первоначальную форму и геометрические размеры. В период деформации происходит накопление энергии, при восстановлении – ее передача.
Именно это свойство возвращаться к исходному виду и принесло широкое распространение этим деталям: они отличные амортизаторы, элементы клапанов, предупреждающие превышение давления, комплектующие для измерительных приборов. В этих и других ситуациях, благодаря умению упруго деформироваться, они выполняют важную работу, поэтому от них требуется высокое качество и надежность.
Коэффициент жесткости соединений пружин
Приведенный выше показатель коэффициента жесткости детали при параллельном или последовательном соединении определяет многие характеристики соединения. Довольно часто проводится определение тому, чему равно удлинение пружины. Среди особенностей параллельного или последовательного соединения можно отметить нижеприведенные моменты:
- При параллельном подключении удлинение обоих изделий будет равным. Не стоит забывать о том, что оба варианта должны характеризоваться одинаковой длиной в свободном положении. При последовательном показатель увеличивается в два раза.
- Свободное положение – ситуация, в которой деталь находится без прикладывания нагрузки. Именно оно в большинстве случаев учитывается при проведении расчетов.
- Коэффициент жесткости изменяется в зависимости от применяемого способа подсоединения. В случае параллельного соединения показатель увеличивается в два раза, при последовательном уменьшается.
Для проведения расчетов нужно построить схему подключения всех элементов. Основание представлено линией со штриховкой, изделие обозначается схематически, а тело в упрощенном виде. Кроме этого, от упругой деформации во многом зависит кинетическая и другая энергия.
Параллельное соединение пружин
с1с2
. (2.9)
Р
Сила упругости эквивалентной пружины с коэффициентом жесткости с* будет равна сумме сил упругости двух установленных пружин, откуда с учетом (2.9) получаем
,
окончательно
. (2.10)
Последовательное соединение пружин
При последовательном соединении двух пружин, имеющих коэффициенты жесткости с1, с2 (рис. 2.6), смещение тела равно сумме деформаций пружин:
. (2.11)
Рис. 3.6 Последовательное соединение пружин
Сила упругости эквивалентной пружины с коэффициентом жесткости с* будет равна каждой из сил упругости установленных пружин, откуда
,
откуда
Окончательно с учетом (2.11) получаем
. (2.12)
-
-
-
Влияние сопротивления на свободные колебания
-
-
Пусть на точку массы m, совершающую прямолинейное движение, действуют две силы (рис. 2.7):
-
Восстанавливающая сила (сила упругости пружины):
.
-
Сила сопротивления, пропорциональная скорости движения точки (сила сопротивления демпфера): .
Рис. 2.7 Движение массы с демпфированием
Дифференциальное уравнение движения точки запишется как
,
обозначая
получаем линейное однородное дифференциальное уравнение 2-го порядка с постоянными коэффициентами:
. (2.14)
Характеристическое уравнение имеет вид
, (2.15)
его корни равны
, (2.16)
где – дискриминант.
Как известно из курса высшей математики, общее решение дифференциального уравнения (2.14) существенно зависит от знака дискриминанта , т.е. от соотношения между b и k.
1-й случай (малое сопротивление): b k , D0.
Обозначим , причем k*k. Тогда корни (2.16) характеристического уравнения будут комплексно сопряженными:
,
Общее решение дифференциального уравнения (2.14) в данном случае имеет вид
, (2.17)
это затухающие колебания с частотой k* и периодом
Амплитуда колебаний убывает со временем. Отношение последующей амплитуды к предыдущей называется декрементом затухания:
Рис. 2.8 Затухающие колебания
Часто используется также логарифмический декремент
Таким образом, амплитуды образуют геометрическую прогрессию с показателем q, меньшим единицы.
Видим также, что наличие сопротивления приводит к уменьшению частоты колебаний (k*k) и к увеличению их периода (Т*> Т).
2-й случай (граничный): b = k , D=0.
Корни (2.16) характеристического уравнения получаются кратные, , и решение дифференциального уравнения (2.14) приобретает вид
. (2.19)
Поскольку экспонента убывает быстрее, чем растёт линейная функция времени, в зависимости от начальных условий движения получим ту или иную картину затухающего апериодического (т.е. не колебательного) движения (рис.2.9).
3-й случай (большое сопротивление): b > k, D > 0.
В этом случае обозначим >0, и оба корня (2.16) характеристического уравнения будут действительными и отрицательными:
< 0, < 0,
общее решение
. (2.20)
Рис. 2.9 График затухающего апериодического движения
Здесь также получаем затухающие апериодическое движение, графики будут такие же, как и в случае b= k.
Коэффициент жесткости цилиндрической пружины
На практике и в физике довольно большое распространение получили именно цилиндрические пружины. Их ключевыми особенностями можно назвать следующие моменты:
- При создании указывается центральная ось, вдоль которой и действует большинство различных сил.
- При производстве рассматриваемого изделия применяется проволока определенного диаметра. Она изготавливается из специального сплава или обычных металлов. Не стоит забывать о том, что материал должен обладать повышенной упругостью.
- Проволока накручивается витками вдоль оси. При этом стоит учитывать, что они могут быть одного или разного диаметра. Довольно большое распространение получил вариант исполнения цилиндрического типа, но большей устойчивостью характеризуется цилиндрический вариант исполнения, в сжатом состоянии деталь обладает небольшой толщиной.
- Основными параметрами можно назвать больший, средний и малый диаметр витков, диаметр проволоки, шаг расположения отдельных колец.
Не стоит забывать о том, что выделяют два типа деталей: сжатия и растяжения. Их коэффициент жесткости определяется по одной и той же формуле. Разница заключается в следующем:
- Вариант исполнения, рассчитанный на сжатие, характеризуется дальним расположением витков. За счет расстояние между ними есть возможность сжатия.
- Модель, рассчитанная на растяжение, имеет кольца, расположенные практически вплотную. Подобная форма определяет то, что при максимальная сила упругости достигается при минимальном растяжении.
- Также есть вариант исполнения, который рассчитан на кручение и изгиб. Подобная деталь рассчитывается по определенным формулам.
Расчет коэффициента цилиндрической пружины может проводится при использовании ранее указанной формулы. Она определяет то, что показатель зависит от следующих параметров:
- Наружного радиуса колец. Как ранее было отмечено, при изготовлении детали применяется ось, вокруг которой проводится накручивание колец. При этом не стоит забывать о том, что выделяют также средний и внутренний диаметр. Подобный показатель указывается в технической документации и на чертежах.
- Количества создаваемых витков. Этот параметр во многом определяет длину изделия в свободном состоянии. Кроме этого, количество колец определяет коэффициент жесткость и многие другие параметры.
- Радиуса применяемой проволоки. В качестве исходного материала применяется именно проволока, которая изготавливается из различных сплавов. Во многом ее свойства оказывают влияние на качества рассматриваемого изделия.
- Модуля сдвига, который зависит от типа применяемого материала.
Коэффициент жесткости считается одним из наиболее важных параметров, который учитывается при проведении самых различных расчетов.
Основные характеристики
Независимо от вида пружин, особенности их работы, связанные с постоянно деформацией, требуют наличия таких параметров:
- Способности сохранять постоянное значение упругости в течение заданного срока.
- Пластичности.
- Релаксационной стойкости, благодаря которой деформации не становятся необратимыми.
- Прочности, то есть способности выдерживать различные виды нагрузок: статические, динамические, ударные.
Каждая из этих характеристик важна, однако при выборе упругой комплектующей для конкретной работы в первую очередь интересуются ее жесткостью как важным показателем того, подойдет ли она для этого дела и насколько долго будет работать.
Типы пружин
Пружины можно классифицировать по направлению прилагаемой нагрузки:
- пружины растяжения; предназначены для работы в режиме растягивания, при деформации их длина увеличивается; как правило, такие устройства имеют нулевой шаг, т.е. намотаны «виток к витку»; примером могут служить пружины в весах-безменах, пружины для автоматического закрытия дверей и т.д.;
- пружины сжатия под нагрузкой, напротив, укорачиваются; в исходном состоянии между их витками есть некоторое расстояние, как, например, в амортизаторах автомобильных подвесок.
В данной статье рассматриваются пружины, представляющие собой цилиндрические спирали. В технике применяется много других разновидностей упругих устройств: пружины в виде плоских спиралей (используются в механических часах), в виде полос (рессоры), пружины кручения (в точных весах), тарельчатые (сжимающиеся конические поверхности) и т.п. Своего рода пружинами являются амортизирующие изделия из полимерных эластичных материалов, прежде всего резины. Во всех этих устройствах используется один и тот же принцип — запасать энергию упругой деформации и возвращать ее.
Готовые работы на аналогичную тему
- Курсовая работа Жесткость пружины, формула 410 руб.
- Реферат Жесткость пружины, формула 220 руб.
- Контрольная работа Жесткость пружины, формула 210 руб.
Получить выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимость
Жёсткость деформируемых тел при их соединении
Параллельное соединение пружин.
Последовательное соединение пружин.
При соединении нескольких упруго деформируемых тел (далее для краткости — пружин) общая жёсткость системы будет меняться. При параллельном соединении жёсткость увеличивается, при последовательном — уменьшается.
Параллельное соединение
При параллельном соединении n{\displaystyle n} пружин с жёсткостями, равными k1,k2,k3,…,kn,{\displaystyle k_{1},k_{2},k_{3},…,k_{n},} жёсткость системы равна сумме жёсткостей, то есть k=k1+k2+k3+…+kn.{\displaystyle k=k_{1}+k_{2}+k_{3}+\ldots +k_{n}.}
Доказательство
В параллельном соединении имеется n{\displaystyle n} пружин с жёсткостями k1,k2,…,kn.{\displaystyle k_{1},k_{2},…,k_{n}.} Из III закона Ньютона, F=F1+F2+…+Fn.{\displaystyle F=F_{1}+F_{2}+\ldots +F_{n}.}
(К ним прикладывается сила F{\displaystyle F}. При этом к пружине 1 прикладывается сила F1,{\displaystyle F_{1},} к пружине 2 сила F2,{\displaystyle F_{2},} … , к пружине n{\displaystyle n} сила Fn.{\displaystyle F_{n}.})
Теперь из закона Гука (F=−kx{\displaystyle F=-kx}, где x — удлинение) выведем: F=kx;F1=k1x;F2=k2x;…;Fn=knx.{\displaystyle F=kx;F_{1}=k_{1}x;F_{2}=k_{2}x;…;F_{n}=k_{n}x.}
Подставим эти выражения в равенство (1):
kx=k1x+k2x+…+knx;{\displaystyle kx=k_{1}x+k_{2}x+\ldots +k_{n}x;} сократив на x,{\displaystyle x,} получим:
k=k1+k2+…+kn,{\displaystyle k=k_{1}+k_{2}+\ldots +k_{n},} что и требовалось доказать.
Последовательное соединение
При последовательном соединении n{\displaystyle n} пружин с жёсткостями, равными k1,k2,k3,…,kn,{\displaystyle k_{1},k_{2},k_{3},…,k_{n},} общая жёсткость определяется из уравнения: 1k=(1k1+1k2+1k3+…+1kn).{\displaystyle 1/k=(1/k_{1}+1/k_{2}+1/k_{3}+\ldots +1/k_{n}).}
Доказательство
В последовательном соединении имеется n{\displaystyle n} пружин с жёсткостями k1,k2,…,kn.{\displaystyle k_{1},k_{2},…,k_{n}.}
Из закона Гука (F=−kl{\displaystyle F=-kl}, где l — удлинение) следует, что F=k⋅l.{\displaystyle F=k\cdot l.} Сумма удлинений каждой пружины равна общему удлинению всего соединения l1+l2+…+ln=l.{\displaystyle l_{1}+l_{2}+\ldots +l_{n}=l.}
На каждую пружину действует одна и та же сила F.{\displaystyle F.} Согласно закону Гука, F=l1⋅k1=l2⋅k2=…=ln⋅kn.{\displaystyle F=l_{1}\cdot k_{1}=l_{2}\cdot k_{2}=\ldots =l_{n}\cdot k_{n}.} Из предыдущих выражений выведем: l=Fk,l1=Fk1,l2=Fk2,…,ln=Fkn.{\displaystyle l=F/k,\quad l_{1}=F/k_{1},\quad l_{2}=F/k_{2},\quad …,\quad l_{n}=F/k_{n}.} Подставив эти выражения в (2) и разделив на F,{\displaystyle F,} получаем 1k=1k1+1k2+…+1kn,{\displaystyle 1/k=1/k_{1}+1/k_{2}+\ldots +1/k_{n},} что и требовалось доказать.
Коэффициент Пуассона — WiKi
Коэффициент Пуассона (обозначается как ν{\displaystyle \nu } или μ{\displaystyle \mu }) — величина отношения относительного поперечного сжатия к относительному продольному растяжению. Этот коэффициент зависит не от размеров тела, а от природы материала, из которого изготовлен образец. Коэффициент Пуассона и модуль Юнга полностью характеризуют упругие свойства изотропного материала. Безразмерен, но может быть указан в относительных единицах: мм/мм, м/м.
Приложим к однородному стержню растягивающие его силы. В результате воздействия таких сил стержень в общем случае окажется деформирован как в продольном, так и в поперечном направлениях.
Пусть l{\displaystyle l} и d{\displaystyle d} длина и поперечный размер образца до деформации, а l′{\displaystyle l^{\prime }} и d′{\displaystyle d^{\prime }} — длина и поперечный размер образца после деформации. Тогда продольным удлинением называют величину, равную (l′−l){\displaystyle (l^{\prime }-l)} , а поперечным сжатием — величину, равную −(d′−d){\displaystyle -(d^{\prime }-d)} . Если (l′−l){\displaystyle (l^{\prime }-l)} обозначить как Δl{\displaystyle \Delta l} , а (d′−d){\displaystyle (d^{\prime }-d)} как Δd{\displaystyle \Delta d} , то относительное продольное удлинение будет равно величине Δll{\displaystyle {\frac {\Delta l}{l}}} , а относительное поперечное сжатие — величине −Δdd{\displaystyle -{\frac {\Delta d}{d}}} . Тогда в принятых обозначениях коэффициент Пуассона μ{\displaystyle \mu } имеет вид:
Обычно при приложении к стержню растягивающих усилий он удлиняется в продольном направлении и сокращается в поперечных направлениях. Таким образом, в подобных случаях выполнятся Δll>0{\displaystyle {\frac {\Delta l}{l}}>0} и Δdd<0{\displaystyle {\frac {\Delta d}{d}}<0} , так что коэффициент Пуассона положителен. Как показывает опыт, при сжатии коэффициент Пуассона имеет то же значение, что и при растяжении.
Для абсолютно хрупких материалов коэффициент Пуассона равен 0, для абсолютно несжимаемых — 0,5. Для большинства сталей этот коэффициент лежит в районе 0,3, для резины он равен приблизительно 0,5.
Существуют также материалы (преимущественно полимеры), у которых коэффициент Пуассона отрицателен, такие материалы называют ауксетиками. Это значит, что при приложении растягивающего усилия поперечное сечение тела увеличивается.
К примеру, бумага из однослойных нанотрубок имеет положительный коэффициент Пуассона, а по мере увеличения доли многослойных нанотрубок наблюдается резкий переход к отрицательному значению −0,20.
Отрицательным коэффициентом Пуассона обладают многие анизотропные кристаллы, так как коэффициент Пуассона для таких материалов зависит от угла ориентации кристаллической структуры относительно оси растяжения. Отрицательный коэффициент обнаруживается у таких материалов, как литий (минимальное значение равно −0.54), натрий (−0.44), калий (−0.42), кальций (−0.27), медь (−0.13) и других. 67 % кубических кристаллов из таблицы Менделеева имеют отрицательный коэффициент Пуассона.
Физика
Закон Гука
Пока пружины не растянуты или сжимаются сверх предела упругости , большинство пружин подчиняются закону Гука, который гласит, что сила, с которой пружина отталкивает, линейно пропорциональна расстоянию от ее равновесной длины:
- Fзнак равно-kИкс, {\ Displaystyle F = -kx, \}
где
- x — вектор смещения — расстояние и направление, в котором пружина деформируется относительно ее равновесной длины.
- F — результирующий вектор силы — величина и направление возвращающей силы, оказываемой пружиной.
- K представляет собой скорость , пружины или силовая константа пружины, константа , которая зависит от материала и конструкции весной в. Отрицательный знак указывает на то, что сила, которую оказывает пружина, находится в направлении, противоположном ее смещению.
Винтовые пружины и другие обычные пружины обычно подчиняются закону Гука. Есть полезные пружины, которые этого не делают: пружины, основанные на изгибе балки, могут, например, создавать силы, которые нелинейно изменяются с перемещением.
Конические пружины , изготовленные с постоянным шагом (толщиной проволоки), имеют переменную скорость. Однако можно сделать коническую пружину постоянной жесткостью, создав пружину с переменным шагом. Больший шаг катушек большего диаметра и меньший шаг катушек меньшего диаметра заставляет пружину сжиматься или растягиваться с одинаковой скоростью при деформации.
Простые гармонические колебания
Поскольку сила равна массе m , умноженной на ускорение a , уравнение силы для пружины, подчиняющейся закону Гука, выглядит так:
- Fзнак равнома⇒-kИксзнак равнома.{\ Displaystyle F = ma \ quad \ Rightarrow \ quad -kx = ma. \,}
Смещение x как функция времени. Время, которое проходит между пиками, называется периодом .
Масса пружины мала по сравнению с массой присоединенной массы и не учитывается. Поскольку ускорение — это просто вторая производная от x по времени,
- -kИксзнак равномd2Иксdт2.{\ displaystyle -kx = m {\ frac {d ^ {2} x} {dt ^ {2}}}. \,}
Это линейное дифференциальное уравнение второго порядка для смещения как функции времени. Перестановка:
Икс{\ displaystyle x}
- d2Иксdт2+kмИксзнак равно,{\ displaystyle {\ frac {d ^ {2} x} {dt ^ {2}}} + {\ frac {k} {m}} x = 0, \,}
решение которого является суммой синуса и косинуса :
- Икс(т)знак равноАгрех(тkм)+Bпотому что(тkм).{\ displaystyle x (t) = A \ sin \ left (t {\ sqrt {\ frac {k} {m}}} \ right) + B \ cos \ left (t {\ sqrt {\ frac {k} { m}}} \ right). \,}
А{\ displaystyle A}и являются произвольными константами, которые можно найти, рассматривая начальное смещение и скорость массы. График этой функции с (нулевое начальное положение с некоторой положительной начальной скоростью) отображается на изображении справа.
B{\ displaystyle B}Bзнак равно{\ displaystyle B = 0}
Видео
Из этого видео вы узнаете, как определить жесткость пружины.
Последовательное соединение пружин:
1/kобщ = 1/k1 + 1/k2 +. + 1/kn
Либо, если это две последовательно соединенные пружины, то можно использовать следующую формулу:
Однако, нам следует еще вспомнить закон Гука:F = klВ последовательном соединении имеется n пружин с жесткостями k1, k2, и так далее. Из закона Гука следует, что F = kl. Сумма удлинений каждой пружины равна общему удлинению всего соединения l(или х, по разному в учебниках пишется)1 + l2+. + ln = lc. (кстати, это одно из свойств последовательно соединения) По закону Гука получим мы можем вывести следующее уравнение: l = F/k, l1 = F/k1 и т. Д. Собственно, далее из этого выражения следует: 1/kобщ = 1/k + 1/k +. + 1/kn. Собственно, отсюда получаем:kобщ = 1/1/k + 1/k +. + 1/kn. Ну и как вы уже поняли, k пойдет наверх, и оно будет обратно пропорционально числителю, который в свою очередь зависит от коэффициента жесткости.
При параллельном соединении двух пружин, имеющих коэффициенты жесткости с1, с2 (рис. 2.5), смещение тела равно деформации каждой из пружин:
. (2.9)
Рис. 2.5 Параллельное соединение пружин
Сила упругости эквивалентной пружины с коэффициентом жесткости с* будет равна сумме сил упругости двух установленных пружин, откуда с учетом (2.9) получаем
,
. (2.10)
Практические занятия
Механики и физики обозначают с помощью k, c и D коэффициент упругости, пропорциональности, жесткости. Смысл математической записи одинаковый. Численно показатель равняется силе, которая создаёт колебания на одну единицу длины. На практических работах по физике используется в качестве последней величины 1 метр.
Чем выше k, тем больше сопротивление предмета относительно деформации. Дополнительно коэффициент показывает степень устойчивости тела к колебаниям со стороны внешней нагрузки. Параметр зависит от длины и диаметра винтового изделия, количества витков, сырья. Единица измерения жесткости пружины — Н/м.
На практике перед школьниками и механиками может стоять более сложная задача, к примеру, найти общую жёсткость. В таком случае пружины соединены последовательным либо параллельным способом. В первом случае уменьшается суммарная жесткость. Если пружины расположены последовательно, используется следующая формула: 1/k = 1/k1 + 1/k2 + … + 1/ki, где:
- k — суммарная жёсткость соединений;
- k1 …ki — жёсткость каждого элемента системы;
- i — число пружин в цепи.
Если невесомые (расположены горизонтально) предметы соединены параллельно, значение общего k будет увеличиваться. Величина вычисляется по следующей формуле: k = k1 + k2 + … + ki.
Основная методика для вычислений
На практике коэффициент Гука определяется самостоятельно. Для эксперимента потребуется пружина, линейка, груз с определённой массой. Необходимо соблюдать следующую последовательность действий:
- Пружина фиксируется вертикально. Для этого используется любая удобная опора со свободной нижней частью.
- Линейкой измеряется длина предмета. Результат записывается как х1.
- На свободный конец подвешивается груз с известной массой m.
- Измеряется длина изделия под воздействием амплитуды. Вывод записывается как х2.
- Производит подсчёт абсолютного удлинения: x = x2-x1. Для определения энергии (силы) и k в международной системе СИ осуществляется перевод длины из разных единиц измерения в метры.
- Сила, спровоцировавшая деформацию, считается силой тяжести тела. Она рассчитывается по формуле: F = mg, где м является массой используемого груза (вес переводится в килограммы), а g (равен 9,8) — постоянная величина, с помощью которой отмечается ускорение свободного падения.
Если вышеописанные вычисления произведены, необходимо найти значение коэффициента жёсткости. Используется закон Гука, из которого следует, что k=F/x.
Решение задач
Для нахождения жёсткости в случае использования разных предметов, включая пружинные маятники с разной частотой колебаний, применяется формула Гука либо следствие, вытекающее из неё.
Задача № 1. Пружина имеет длину 10 см. На неё оказывается сила в 100 Н. Изделие растянулось на 14 см. Нужно найти k.
Решение: предварительно вычисляется абсолютное удлинение: 14−10=4 см. Результат переводится в метры: 0,04 м. Используя основную формулу, находится k. Его значение равняется 2500 Н/м.
Задача № 2. На пружину подвешивается груз массой 10 кг. Изделие растягивается на 4 см. Нужно найти длину, на которую растянется пружина, если использовать груз массой в 25 кг.
Решение: Определяется сила тяжести путем умножения 10 кг на 9.8. Результат записывается в Ньютонах. Определяется k=98/0.04=2450 Н/м. Рассчитывается, с какой силой воздействует второй груз: F=mg=245 Н. Для нахождения абсолютного удлинения используется формула x=F/k. Во втором случае х равняется 0,1 м.
Отличия пружин подвески и их маркировка
Основным идентификационным параметром любой пружины служит ее наружный диаметр. Производители не могут его самопроизвольно изменить, так как этот размер определяется конструктивными особенностями самого автомобиля. Все остальные параметры могут быть абсолютно различными. Так производители могут:
- изменить диаметр прута, из которого она изготавливается и даже использовать прут, имеющий диаметр переменного значения;
- изготавливать пружины одинаковой высоты, но различной жесткости;
- изменить межвитковое расстояние и количество витков, сохраняя при этом жесткость.
Статья в тему: Как зарегистрироваться на экзамен в ГИБДД через госуслуги? Поэтому на заводах перед установкой проводят контроль статистической нагрузки. Проводится такая операция следующим образом: измеряют высоту пружины, сжав ее с определенным усилием. Так как для каждой конкретной модели автомобиля высота в сжатом состоянии регламентирована полем допуска, то детали, не попавшие в это поле, выбраковываются.
Пружины, попавшие в границы верхнего поля допуска относят к классу А (длинные), а в категорию В (короткие) попадают те, что имеют высоту в пределах нижнего поля допуска. Далее пружины одного класса маркируют краской, причем цвет маркировки зависит от модели автомобиля, на котором они должны быть установлены.
- Пружины класса А автомобилей ВАЗ маркируют по цвету желтой, белой, коричневой и оранжевой красками.
- Вид В также маркируют по цвету, но зеленой, голубой, синей и черной красками.
Маркировка по цвету наносится на внешнюю сторону витков в виде цветной полоски. Обилие цветов маркировочной краски объясняется тем, что с целью уменьшения влияния коррозии, они подвергают специальному покрытию (хлоркаучуковая эмаль или защитное эпоксидное покрытие), которое также бывает разного цвета (черное, серое, синее, белое, голубое) и определяет как модель автомобиля, так и назначение пружины (передняя или задняя). Причем на заводах, выпускающих различные модели ВАЗ и «Лада», передние элементы окрашены, как правило, в черный цвет. Исключение составляют только пружины с переменным межвитковым расстоянием (шагом) — они окрашиваются в голубой цвет.
Статья в тему: Самостоятельное приготовление электролита для АКБ