Как работает двигатель автомобиля? [о причинах поломок и перебоев в работе машины]

Содержание:

Классификация двигателей

Поршневые двигатели классифицируют по следующим признакам:

  • по способу воспламенения горючей смеси — от сжатия (дизели) и от электрической искры
  • по способу смесеобразования — с внешним (карбюраторные и газовые) и внутренним (дизели) смесеобразованием
  • по способу осуществления рабочего цикла — четырех- и двухтактные;
  • по виду применяемого топлива — работающие на жидком (бензин или дизельное топливо), газообразном (сжатый или сжиженный газ) топливе и мно­готопливные
  • по числу цилиндров — одно- и многоцилиндровые (двух-, трех-, четырех-, шестицилиндровые и т.д.)
  • по расположению цилиндров — однорядные, или линейные (цилиндры расположены в один ряд), и двухрядные, или V-образные (один ряд цилиндров размещен под углом к другому)

На тракторах и автомобилях большой грузоподъемности применяют четырехтактные многоцилиндровые дизели, на автомобилях легковых, малой и средней грузоподъемности — четырехтактные многоцилиндровые карбюра­торные и дизельные двигатели, а также двигатели, работающие на сжатом и сжиженном газе.

Двигатель внутреннего сгорания

Когда мы говорим о двигателе автомобиля, то чаще всего представляем себе двигатель внутреннего сгорания, в качестве топлива для которого используется бензин, дизельное топливо, газ, а в последнее время пробуют и водород.

В двигателе внутреннего сгорания, как несложно догадаться, происходит преобразование энергии, выделяемой при сгорании легковоспламеняющихся веществ в механическую энергию. Конструкции двигателей внутреннего сгорания могут отличаться, бывают поршневые двигатели, роторные и газотурбинные.

Но принцип их работы остается неизменным. Энергия, выделяемая при сгорании топлива, в конечном итоге преобразуется в механическую энергию вращения вала двигателя и через систему механических связей передается на колеса, заставляя их вращаться.

Основной недостаток двигателей внутреннего сгорания их неэкологичность. При сжигании топлива выделяется много вредных веществ. Исключение в этом составляет водород, продуктом горения которого является обыкновенная вода, но проблема с его использованием на сегодняшний день заключается в дороговизне, хотя вероятно, что в будущем это будет основной вид топлива.

Но двигатели внутреннего сгорания – не единственные автомобильные двигатели.

Об эволюции моторов и не только

Зная, что же такое ДВС в ТС, можно немного углубиться в изучение вопроса. И тут окажется, что современный мотор имеет несколько разновидностей со своими нюансами и особенностями:

  • роторно-поршневые;
  • газотурбинные;
  • поршневые.

О каждом стоит рассказать немного подробнее.

Роторно-поршневые

Что это такое в машине? И по какому принципу работает? В таком варианте ротор помещается в специальный отсек и выполняет при движении сразу несколько задач, выступая в роли:

  • коленчатого вала;
  • ГРМ;
  • поршня.

Работа двигателя внутреннего сгорания этого типа базируется на расширении газов. Именно они и приводят в движение ротор.

Газотурбинные

Принцип работы ДВС тоже довольно прост:

  • на ротор насажены специальные лопатки клиновидной формы;
  • тепловая энергия заставляет его двигаться;
  • за счет этого в движение приходит вал турбины;
  • энергия преобразуется в механическую работу.

Используются подобные модели довольно редко.

Поршневые

Это самый распространенный и оправдавший надежды конструкторов вариант. Если вкратце описывать, как работает двигатель внутреннего сгорания, то нужно обязательно отметить следующие нюансы:

  • камера сгорания помещается внутрь цилиндра;
  • кривошипно-шатунный механизм сдвигается за счет тепловой энергии;
  • в свою очередь он распределяет механические усилия на коленчатый вал.

Виды двигателей поршневого типа разнообразны:

  • карбюраторные;
  • инжекторные;
  • дизельные.

Принцип работы ДВС карбюраторного типа основывается на формировании горючего состава в карбюраторе. Уже оттуда он поступает в цилиндры, где и происходят стандартные процессы.

Инжекторные двигатели автомобиля считаются довольно сложными. Важная часть процессов происходит под контролем электроники:

  • залив горючего в коллектор;
  • прохождение через форсунки;
  • возгорание.

Дизельные двигатели внутреннего сгорания наиболее просты. Возгорание смеси осуществляется без дополнительного поджига. За него «работает» давление. Ввод топлива происходит напрямую через форсунки в строго дозированном количестве.

Принцип работы ДВС, описанных выше, схож между собой. Но более востребованы — поршневые. Среди всех их плюсов специалисты особенно выделяют низкие затраты при неизменно высокой производительности. Поэтому они были взяты на «вооружение» автомобильной промышленностью.

Далее речь пойдет об устройстве двигателя внутреннего сгорания поршневого типа. Как самый распространенный, он вызывает набольший интерес у автолюбителей и других категорий владельцев различных технических устройств.

Как устроен двигатель автомобиля – изучаем схему устройства

Классическое устройство двигателя включает в себя цилиндр и картер, закрытый в нижней части поддоном. Внутри цилиндра находится поршень с различными кольцами, который перемещается в определенной последовательности. Он имеет форму стакана, в его верхней части располагается днище. Чтобы окончательно понять, как устроен двигатель автомобиля, необходимо знать, что поршень с помощью поршневого пальца и шатуна связывается с коленчатым валом.

Для плавного и мягкого вращения используются коренные и шатунные вкладыши, играющие роль подшипников. В состав коленчатого вала входят щеки, а также коренные и шатунные шейки. Все эти детали, собранные вместе, называются кривошипно-шатунным механизмом, который преобразует возвратно-поступательное перемещение поршня в круговое вращение коленчатого вала.

Верхняя часть цилиндра закрывается головкой, где расположены впускной и выпускной клапаны. Они открываются и закрываются в соответствии с перемещением поршня и движением коленчатого вала. Чтобы точно представить, как работает двигатель автомобиля, видео в нашей библиотеке следует изучить также подробно, как и статью. А пока мы попытаемся выразить его действие на словах.

Ниже на рисунке показана типичная схема устройства двигателя автомобиля (одного цилиндра).

B – Крышка клапанов.

C – Выпускной клапан, через который отводятся газы из камеры сгорания.

D – Выхлопное отверстие.

E – Головка цилиндра.

F – Полость для охлаждающей жидкости. Чаще всего там находится антифриз, который охлаждает нагревающийся корпус мотора.

H – Маслосборник.

I – Поддон, куда стекает все масло.

J – Свеча зажигания, образующая искру для поджога топливной смеси.

K – Впускной клапан, через который в камеру сгорания попадает топливная смесь.

M – Поршень, который движется вверх-вниз.

N – Шатун, соединенный с поршнем. Это основной элемент, который передает усилие на коленчатый вал и трансформирует линейное движение (вверх-вниз) во вращательное.

O – Подшипник шатуна.

P – Коленчатый вал. Он вращается за счет движения поршня.

Также стоит выделить такой элемент, как поршневые кольца (их еще называют маслосъемными кольцами)

Их нет на рисунке, однако они являются важной составляющей системы двигателя автомобиля. Данные кольца огибают поршень и создают максимальное уплотнение между стенками цилиндра и поршня

Они предотвращают попадание топлива в масляный поддон и масла в камеру сгорания.

Это основные элементы конструкции, которые имеют место во всех двигателях внутреннего сгорания. На самом деле элементов намного больше, но тонкостей мы касаться не будем.

Строение асинхронного двигателя

Для того, чтобы разобраться в теории работы двигателя, нам надо рассмотреть из чего же он состоит.

  1. Крышка клеммной коробки.
  2. Клеммная коробка.
  3. Стяжные болты корпуса.
  4. Вал ротора.
  5. Передняя крышка корпуса.
  6. Опорная плита корпуса.
  7. Корпус с ребрами охлаждения.
  8. Информационная табличка завода-изготовителя («шильдик»).
  9. Задняя крышка корпуса.
  10. Дополнительный вентилятор охлаждения двигателя («вертушка»). «Вертушка» устанавливается не на все двигатели. Если предполагаемое место работы обеспечивает хорошее воздушное охлаждение, то потребности в дополнительном обдуве не требуются.

На самом же деле асинхронный двигатель состоит из трех частей (слева-направо): ротора, статора и корпуса, но главными частями считаются именно ротор и статор, о которых мы с вами и поговорим.

Рабочий цикл ДВС

Основной цикл мотора подразумевает выполнение четырех основных тактов. Именно о них и пойдет речь дальше по тексту.

Первый такт: впуск

Начальный — движение кулачков, которые являются частью конструкции распределительного вала. Они меняют воздействуют на клапан впуска, заставляя его открыться.

Далее, вслед за открывшимся клапаном, с места двигается поршень. Деталь постепенно перемещается из крайнего верхнего положения в крайнее нижнее. Воздух внутри цилиндра в связи с уменьшением пространства поршнем становится более разреженным, благодаря чему становится возможным поступление подготовленной рабочей смеси.

После этого поршень начинает действовать на коленвал через шатун, вследствие чего вал поворачивается на 180 градусов. Сам поршень уже достигает своего критического нижнего положения, и на этом моменте начинается второй такт.

Второй такт: сжатие

Он подразумевает дальнейшее сжатие смеси, находящейся внутри цилиндра. Клапан впуска закрывается, и поршень меняет свое направление, двигаясь вверх. Воздух в связи с уменьшением пространства начинает сжиматься, а рабочая смесь — нагреваться. Когда второй такт подходит к концу, в действие приходит система зажигания. Ее основное назначение — подача на свечу заряда электричества для образования искры. Именно эта искра поджигает сжатую смесь из топлива и воздуха, приводя к ее воспламенению.

Отдельно стоит рассмотреть, как зажигается топливо у дизельного ДВС. Как только завершается сжатие, начинает поступать мелкораспыленное дизельное топливо через форсунку внутрь камеры. Впоследствии горючее вещество перемешивается с воздухом внутри, благодаря чему происходит воспламенение.

Что касается карбюраторного двигателя со стандартным топливом, то на втором такте коленчатый вал успевает сделать полный оборот.

Третий такт: рабочий ход

Третий такт называется рабочим ходом. Газы, оставшиеся после сгорания смеси, начинают толкать поршень, перемещая его вниз. Полученная деталью энергия передается коленвалу, и тот снова поворачивается, но уже на половину оборота.

Четвертый такт: выпуск

Четвертый такт — выпуск оставшихся газов. Когда такт только начинается, кулачок меняет положение на этот раз выпускного клапана, открывая его. Это способствует началу движения поршня наверх, вследствие чего из цилиндра начинают выходить отработавшие газы.

Интересно, что на современных моделях транспортных средств ДВС оборудованы не одним цилиндром, а несколькими. Благодаря их слаженной работе обеспечивается более качественная работа мотора и систем машины. При этом в каждом цилиндре единовременно выполняются разные такты. Так, например, в одном цилиндре вовсю идет рабочий ход, а во втором — коленчатый вал еще только совершает оборот. Подобная конструкция также:

  • избавляет от ненужных вибраций;
  • уравновешивает силы, которые действуют на работу коленвала;
  • организует ровную работу мотора.

Ввиду компактности двигатели с несколькими цилиндрами изготавливают не рядными, а V-образными. Также существует форма оппозитных двигателей, которые часто можно встретить на автомобилях производства Subaru. Такое решение позволяет сэкономить много места под капотом.

Причины износа поршней двигателя

Трещины на головках поршней и на поршневых кольцах из-за термического износа являются обычной проблемой. Развитие автомобильной промышленности в последние годы привело к тому, что эффективность поршней и поршневых колец в двигателях внутреннего сгорания зависит в первую очередь от долговечности используемых материалов. Условия эксплуатации привода также являются важным фактором. Вероятность отказа двигателя увеличивается с усилением тепловых нагрузок, связанных с ростом производительности (например, за счет увеличения степени сжатия, номинальной мощности, наддува или из-за использования более двух клапанов на цилиндр).

Конструкционные и эксплуатационные факторы влияют на деградацию материала, используемого в поршнях. В зависимости от перечисленных факторов можно указать следующие виды износа:

  • износ из-за трения,
  • износ, вызванный повреждением материала (действие переменных механических и термических нагрузок),
  • процесс коррозии (изменение физико-химических свойств верхнего слоя материала),
  • эрозионный (в результате динамического воздействия газообразной или жидкой среды).

Очень часто трещины вызывают зазубрины, образованные краями углублений клапана. Такие повреждения могут привести, в частности, к нарушениям в процессе горения топливно-газовой смеси или к снижению герметичности камеры.

В двигателях с форкамерным впрыском наиболее распространенным дефектом является растрескивание головки поршня.

Температура на краю поршня в зоне камеры сгорания может быть чуть более 380°C . В случае контакта с жидкостью создаются экстремальные условия, которые могут вызвать трещины или необратимую деформацию поршня. Такое повреждение днища может быть причиной, например, попадания воды или топлива в камеру сгорания.

Еще одна причина повреждения поршня — его тепловая перегрузка. Она может произойти, если масло меняют слишком редко (в автомобилях с двигателем с воспламенением от сжатия его следует менять примерно раз в год; в автомобилях с двигателем с искровым зажиганием — примерно каждые 1,5 года). Это также может привести к засорению форсунок охлаждения моторного масла.

От 40 до 50% механических потерь в двигателе внутреннего сгорания — это потери из-за трения колец и поршня о поверхность подшипника цилиндра. По этой причине размеры поверхности трения колец уменьшаются (при неизменном давлении). Это приводит к снижению эластичности поршневых колец, что может вызвать разрушение из-за тяжелых условий эксплуатации. Растрескивание поршневых колец также может быть следствием:

  • трибологического износа;
  • механических перегрузок, которые возникают из-за нарушения процесса сгорания, ошибок сборки или из-за больших нагрузок при запуске холодного двигателя.

Трибологический износ — это вид износа, возникающий в результате процессов трения. Процессы изнашивания изменяют массу, структуру и физические свойства поверхностных слоев контактных площадок. Интенсивность износа является следствием различных взаимодействий и сопротивления участков трения поверхностных слоев.

Еще одна причина повреждения — захват. Он появляется на юбке поршня и вокруг колец. Частые причины этого явления — частицы от процессов трибологического износа или локального перегрева. Алюминиевый сплав поршня термически расширяется вдвое больше, чем чугун в цилиндре.

Основными параметрами двигателя внутреннего сгорания являются:

  • объем хода — это разность между верхним и нижним возвратным положением поршня в цилиндре;
  • объем камеры сгорания — это объем над головкой поршня, когда он находится в верхнем убираемом положении;
  • общий объем двигателя — это сумма объема цилиндра и объема камеры сгорания;
  • степень сжатия — это общий объем, деленный на объем камеры сгорания.

Поршень является одной из важнейших частей двигателя, в случае возникновения неисправностей необходимо сразу провести диагностику. Промедление может провести к дорогому ремонту или вообще полной замене двигателя.

Есть ли будущее у автомобилей на водородном топливе

В настоящее время имеется множество препятствий для того, чтобы перевести большую часть автомобилей на водородное топливо:

Высокая цена водорода. Примерная цена 9 долларов на 100 км пробега. Гибридный автомобиль (Toyota Prius) проедет те же сто км за 2,8 долларов, а Tesla Model S – за 3 бакса. А снижение цены на водород до уровня цен на бензин не прогнозируют даже сами производители автомобилей. Поэтому здесь не получится никакой экономии как при покупке транспорта, так и при заправках.

Производство водорода — вредно для экологии. Сейчас водород производится при помощи паровой конверсии метана, либо частичного окисления. После производства чистого водорода в атмосферу оксид углерода (углекислый газ, CO2), против которого борются многие страны при помощи альтернативных источников энергии для автомобилей. Поэтому здесь получается замкнутый круг.

Отсутствие развития водородных заправок. Для открытия средней водородной заправочной станции требуется не очень большие средства. Все станции можно пересчитать по пальцам, поэтому на водородном автомобиле далеко не уедешь. Придётся осуществлять поездки только в тех местах, где имеются эти самые водородные станции.

Высокая цена на водородные автомобили. Цена на Toyota Mirai на данный момент составляет от 58 тыс. долларов, а на самом деле его продают почти по себестоимости. Из-за таких цен многие не спешат с покупкой таких автомобилей.

Отсутствие преимуществ перед электрокарами. Запас хода, цена заправки, безопасность, мощность и разгон – везде выигрывают электрические автомобили по сравнению с водородными машинами. Единственный плюс у водородных авто – это очень быстрая заправка – 3-5 минут, тогда как электромобили заправляются за 30 минут и более. В любом случае можно в электрокарах можно быстро поменять батарею и через пару минут ехать на «полном баке». Да и когда изобретут более быстрый метод заправок электрических автомобилей, то водородные авто отойдут на 2 план.

Для чего тогда автоконцерны производят и разрабатывают автомобили? Во-первых, это вложение, вдруг через несколько лет именно эта технология окажется наиболее перспективной. Во-вторых, между фирмами идёт соперничество. В-третьих, в некоторых штатах законодательство так поменялось, что сделать водородное авто в 5 раз выгоднее, чем электрокар, плюс государство даёт постоянные гранты и вливания на развитие заправок. Если появится большое количество заводов по производству водорода, то цена автомобилей и водорода будет более интересная.

Видео: Автогиганты бьют по ТЕСЛА: ВОДОРОДНЫЕ автомобили будущего!

Водородный автомобиль – это авто будущего, к переходу на которые могут перейти в недалёком будущем. Сейчас самый популярный авто на водороде – это Toyota Mirai, стоимость которого сравнима с ценой электрокаров. Обеспечивается работа автомобилей при помощи специальных топливных ячеек или элементов, число которых достигает несколько сотен.

Если бы цена на газ была меньше, а заправок было бы больше, то авто с водородными двигателями получили бы не меньшую популярность, чем электромобили. Посмотрим, что покажет будущее.

Сколько раз прочитали статью: 5 096

Двигатель внешнего сгорания Лукьянова

Юрий Лукьянов – это научный сотрудник Псковского политехнического института. Он уже достаточно давно занимается разработкой новых моделей двигателей. Ученый старался сделать так, чтобы в новых моделях отсутствовали такие элементы, как коробка передач, распредвал и выхлопная труба. Основной недостаток устройств Стирлинга заключался в том, что они имели слишком большие габариты. Именно этот недостаток ученому и удалось устранить за счет того, что лопасти были заменены на поршни. Это помогло уменьшить размер всей конструкции в несколько раз. Некоторые говорят о том, что можно сделать двигатель внешнего сгорания своими руками.

Основные принципы действия ДВС

Ключевым элементом ДВС является один или несколько металлических цилиндров, внутри которых происходит сжигание топлива.

Рис. 1. Внутреннее устройство двигателя внутреннего сгорания.

Внутри цилиндра расположен поршень, диаметр которого чуть меньше диаметра цилиндра, что позволяет ему свободно перемещаться.

Рис. 2. Устройство поршня ДВС.

Поршень представляет собой полый металлический цилиндр, опоясанный пружинящими кольцами, вложенными в канавки на поршне (поршневые) кольца. Назначение поршневых колец — не пропускать газы, образующиеся при сгорании топлива, в промежутки между поршнем и стенками цилиндра. К поршню прикреплен металлический стержень (“палец”), который соединяет поршень с шатуном. Шатун служит для передачи вертикального усилия от поршня к коленчатому валу. В верхней части цилиндра имеются два канала, закрытые клапанами. Через один канал — впускной подается горючая смесь (топливо с воздухом), а через другой — выпускной — выбрасываются продукты сгорания.

В верхней части цилиндра размещена свеча зажигания. С помощью этой детали производится поджиг горючей смеси от искры, возникающей между близко расположенными электродами свечи.

Первый поршневой двигатель в 1807 г. изобрел швейцарец Франсуа Исаак де Риваз.

Плюсы и минусы

Двигатели внутреннего сгорания имеют немало достоинств:

  • удобство и простота использования;
  • доступность топлива;
  • быстрая заправка;
  • долговечность;
  • сохранение работоспособности даже после нескольких ТО.

К тому же для многих автовладельцев звук мотора является лучшей музыкой. Зная это, производители настраивают их особым образом.

Но и минусы у агрегатов существуют:

  • более низкий коэффициент полезного действия по сравнению с электрическими моделями;
  • сложность системы.

Современные модели уже невозможно починить и обслуживать самостоятельно в гараже. Но чем сложнее конструкция, тем больше слабых мест в ней остается. А значит ТО придется проходить все чаще и чаще.

Требует упоминания и экологический аспект. Многие европейские города задыхаются от бензинового смога и не видят солнечного света. Поэтому требования к экологической безопасности регулярно ужесточаются.

Двигатели внутреннего сгорания с течением времени не теряют своих позиций. Несмотря на то, что инженеры и изобретатели бьются над созданием принципиально новых моторов, этот вопрос до сих пор не решен. А значит в ближайшие годы человечество будет пользоваться все теми же привычными, надежными и удобными агрегатами.

Устройство двигателя автомобиля в теории

Устройство ДВС всегда уместно рассматривать на примере работы одного цилиндра. Хотя чаще всего легковые автомобили имеют 4, 6, 8 цилиндров. В любом случае, главная деталь мотора – это цилиндр. В нем располагается поршень, который может двигаться вверх-вниз. При этом существуют 2 границы его передвижения – верхняя и нижняя. Профессионалы их называют ВМТ и НМТ (верхняя и нижняя мертвые точки).

Сам поршень соединен с шатуном, а шатун – с коленчатым валом. При движении поршня вверх-вниз шатун передает нагрузку на коленчатый вал, и тот вращается. Нагрузки от вала передаются на колеса, в результате чего автомобиль начинает движение.

Но главная задача – заставить работать поршень, ведь именно он является главной движущей силой этого сложного механизма. Делается это с помощью бензина, дизельного топлива или газа. Капля топлива, воспламеняющаяся в камере сгорания, отбрасывает поршень с большой силой вниз, тем самым приводя его в движение. Затем поршень по инерции возвращается в верхнюю границу, где снова происходит взрыв бензина и такой цикл повторяется постоянно, пока водитель не заглушит мотор.

Так выглядит устройство двигателя автомобиля. Однако это лишь теория. Давайте рассмотрим более детально циклы работы мотора.

Топливоподкачивающий насос

Основной топливоподкачавающий насос обеспечивает бесперебойную подачу топлива из баков к ТНВД при работающем двигателе. Он обычно приводится в действие от коленчатого или распределительного вала двигателя. Может применяться и автономный электродвигатель, питаемый от генератора ТС. Использование электропривода обеспечивает равномерную подачу топлива независимо от частоты вращения коленчатого вала и возможность аварийного отключения всей системы. Существуют различные конструкции топливоподкачивающих насосов. Они могут быть:

  • шестеренными
  • плунжерными (поршневыми)
  • коловратными (пластинчатого типа)

Как правило, применяются плунжерные и коловратное насосы.

Плунжерный топливоподкачивающий насос

Плунжерный топливоподкачивающий насос состоит из корпуса 5, плунжера 7 с пружиной 6, толкателя 10 с роликом 77, пружиной 9 и штоком 8, а также клапанов — впускного 4 и нагнетательного 1 с пружинами. Толкатель с плунжером могут перемещаться вверх-вниз. Перемещение вверх происходит при повороте эксцентрика 72, изготовленного как одно целое с кулачковым валом ТНВД; перемещение вниз обеспечивают пружины 6 и 9.

При сбегании выступа эксцентрика с ролика толкателя плунжер под действием пружины б перемещается вниз, вытесняя топливо, находящееся под ним, в нагнетательную магистраль насоса. В это время нагнетательный клапан закрыт, а впускной под действием разрежения над плунжером открыт, и топливо поступает из впускной магистрали в надплунжерную полость. При движении толкателя и плунжера вверх впускной клапан закрывается под действием давления топлива, а нагнетательный, наоборот, открывается, и топливо из надплунжерной полости поступает в нижнюю камеру под плунжером. Таким образом, нагнетание топлива происходит только при движении плунжера вниз.

Если подачу топлива в цилиндры двигателя уменьшают, в выпускном трубопроводе насоса, а значит, и в полости под плунжером давление возрастает. В этом случае плунжер не может опуститься вниз даже под действием пружины 6, и толкатель со штоком перемещается вхолостую. По мере расходования топлива давление в нагнетательной полости понижается, и плунжер под действием пружины 6 опять начинает перемещаться вниз, обеспечивая подачу топлива.

Плунжерный топливоподкачивающий насос обычно совмещен с насосом 2 ручной подкачки топлива. Данный насос устанавливается на входе в основной топливоподкачивающий насос и приводится в действие вручную за счет перемещения поршня 3 со штоком. При движении поршня вверх под ним образуется разрежение, открывается впускной клапан, и топливо заполняет подплунжерное пространство. При перемещении поршня вниз впускной клапан закрывается, а нагнетательный открывается, позволяя топливу пройти далее по топливной магистрали.

Коловратный топливоподкачивающий насос

В мощных быстроходных дизелях применяются в основном коловратные топливоподкачивающие насосы. Ротор 7 насоса приводится во вращение от коленчатого вала двигателя. В роторе имеются прорези, в которые вставлены пластины 6. Одним (наружным) концом пластины скользят по внутренней поверхности направляющего стакана 8, а другим (внутренним) — по окружности плавающего пальца 5, расположенного эксцентрически относительно оси ротора. При этом они то выдвигаются из ротора, то вдвигаются в него. Ротор и пластины делят внутреннюю полость направляющего стакана на камеры А, Б и В, объемы которых при вращении ротора непрерывно меняются. Объем камеры А увеличивается, поэтому в ней создается разрежение, под действием которого топливо засасывается из впускной магистрали. Объем камеры В уменьшается, давление в ней повышается, и топливо вытесняется в нагнетательную полость насоса. Топливо, находящееся в камере Б, переходит от входного отверстия стакана к выходному. При повышении давления в нагнетательной полости до определенного уровня открывается редукционный клапан 2, преодолевая усилие пружины 7, и излишек топлива перепускается обратно во впускную полость насоса. Поэтому в нагнетательной полости и выпускном трубопроводе поддерживается постоянное давление. Перед пуском, когда двигатель и, следовательно, основной топливоподкачивающий насос не работают, топливо через него может прокачиваться предпусковым топливоподкачивающим насосом. В этом случае открывается перепускной клапан 3, преодолевая усилие пружины 4. В закрытом положении тарелка этого клапана перекрывает отверстия в тарелке редукционного клапана.

Классификации

По источнику энергии

Двигатели могут использовать следующие типы источников энергии:

  • электрические;
    • постоянного тока (электродвигатель постоянного тока);
    • переменного тока (синхронные и асинхронные);
  • электростатические;
  • химические;
  • ядерные;
  • гравитационные;
  • пневматические;
  • гидравлические;
  • лазерные.

По типам движения

Получаемую энергию двигатели могут преобразовывать к следующим типам движения:

  • вращательное движение твёрдых тел;
  • поступательное движение твёрдых тел;
  • возвратно-поступательное движение твёрдых тел;
  • движение реактивной струи;
  • другие виды движения.

Электродвигатели, обеспечивающие поступательное и/или возвратно-поступательное движение твёрдого тела;

  • линейные;
  • индукционные;
  • пьезоэлектрические.

Некоторые типы электроракетных двигателей:

  • ионные двигатели;
  • стационарные плазменные двигатели;
  • двигатели с анодным слоем;
  • радиоионизационные двигатели;
  • коллоидные двигатели;
  • электромагнитные двигатели и др.

По устройству

Двигатели внешнего сгорания — класс двигателей, где источник тепла или процесс сгорания топлива отделены от рабочего тела:

  • поршневые паровые двигатели;
  • паровые турбины;
  • двигатели Стирлинга;
  • паровой двигатель.

Двигатели внутреннего сгорания — класс двигателей, у которых образование рабочего тела и подвод к нему тепла объединены в одном процессе и происходят в одном технологическом объеме:

  • двигатели с герметично запираемыми рабочими камерами (поршневые и роторные ДВС);
  • двигатели с камерами, откуда рабочее тело имеет свободный выход в атмосферу (газовые турбины).

По типу движения главного рабочего органа ДВС с запираемыми рабочими камерами делятся на ДВС с возвратно-поступательным движением (поршневые) (делятся на тронковые и крецкопфные) и ДВС с вращательным движением (роторные), которые по видам вращательного движения делятся на 7 различных типов конструкций. По типу поджига рабочей смеси ДВС с герметично запираемыми камерами делятся на двигатели с принудительным электрическим поджиганием (калильным или искровым) и двигатели с зажиганием рабочей смеси от сжатия (дизель).

По типу смесеобразования ДВС делятся на: с внешним смесеобразованием (карбюраторные) и с непосредственным впрыском топлива в цилиндры или впускной коллектор (инжекторные). По типу применяемого топлива различают ДВС работающие на бензине, сжиженном или сжатом природном газе, на спирте (метаноле) и пр.

Реактивные двигатели

Воздушно-реактивные двигатели:

  • прямоточные реактивные (ПВРД);
  • пульсирующие реактивные (ПуВРД);
  • газотурбинные двигатели:
    • турбореактивные (ТРД);
    • двухконтурные (ТРДД);
    • турбовинтовые (ТВД);
    • турбовинтовентиляторные ТВВД;

Ракетные двигатели

  • жидкостные ракетные двигатели;
  • твердотопливные ракетные двигатели;
  • ядерные ракетные двигатели;
  • некоторые типы электроракетных двигателей.

По применению

В связи с принципиально различными требованиями к двигателю в зависимости от его назначения, двигатели идентичные по принципу действия, могут называться «корабельными», «авиационными», «автомобильными» и тому подобными.

Категория «Двигатели» в патентоведении одна из наиболее активно пополняемых. В год по всему миру подаётся от 20 до 50 заявок в этом классе. Часть из них отличаются принципиальной новизной, часть — новым соотношением известных элементов. Новые же по конструкции двигатели появляются очень редко.

Несколько слов в заключение

Такое устройство ДВС является практически совершенным. Но с каждым годом разрабатываются новые технологии, повышающие КПД работы мотора, осуществляется улучшение характеристик бензина. При правильном техническом обслуживании двигателя автомобиля он может работать десятилетиями. Некоторые успешные моторы японских и немецких концернов «пробегают» миллион километров и приходят в негодность исключительно из-за механического устаревания деталей и пар трения. Но многие двигатели даже после миллионного пробега успешно проходят капремонт и продолжают выполнять свое прямое предназначение.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector