Фазы и механизм газораспределения — как это работает и на что влияет

Логика работы CVVT

Система CVVT работает на всем диапазоне оборотов ДВС. В зависимости от производителя логика работы может отличаться, но в среднем она выглядит примерно так:

  • Холостой ход. Задача системы – выполнить проворачивание впускного вала так, чтобы обеспечить позднее открытие впускных клапанов. Это положение повышает устойчивость работы двигателя.
  • Средние обороты ДВС. Система обеспечивает промежуточное положение распределительного вала, обеспечивая снижение расхода топлива и выброс вредных веществ с отработанными газами.
  • Высокие обороты ДВС. Действие системы направлено на максимальное увеличение мощности. Для этого впускной вал прокручивается так, чтобы обеспечить опережение открытия клапанов. Так, система обеспечивает лучшее наполнение цилиндров, что позволяет улучшить характеристики ДВС.

Способы регулирования

Регулировка критериев, в которых функционирует механизм газораспределения в транспортном средстве, предусматривает различные варианты изменения фаз. Это может быть поворот распредвала, либо использование кулачков с различным профилем, либо же различная заданная высота поднятия клапанов. Именно система, основанная на вращательном действии распред вала мотора, получила максимальное распространение.

В таком способе предусмотрена гидроуправляемая муфта. Само проворачивание распредвала происходит именно с ее участием. Устанавливают ее чаще всего на распредвале впускных клапанов. Конструктивно для управления ею предусмотрены датчики, ЭБУ, а также некоторые устройства исполнительного типа. На управляющий блок. поступают сигналы, собранные датчиками, в результате чего формируются команды электрогидравлическому распределителю. Смена газораcпределяющих фаз эффективна и на холостом ходу и при достижении максимальной отдачи агрегата.

В cледующей разновидности газораспределяющей схемы фазы меняются благодаря использованию в ней кулачков разных размеров. Такая установка позволяет менять периоды, в течение которых будут открыты клапаны и выcоту, на которую они смогут подняться. Применение блокирующего механизма позволяет переключаться между разными режимами работы (Hon­da — VTEC).

Если нагрузка на движок невелика, то впускные клапана управляютcя малыми. кулачками. Как только обороты возрастают, то в действие приводится уже механизм блокирующего типа. Происходит объединение коромысел от большого и малых кулачков в единую составляющую. В это же время усилие уходит на впускные клапана.

https://youtube.com/watch?v=1faYk4ziGd8

Существует еще одна методика смены газораспределяющих фаз, что основана на принципе коррекции высоты поднятия клапанов. При том, что движок может эксплуатироваться в разных режимах, она дает возможность отказаться от активного пользования заслонкой акселератора. Впервые стала применяться, как Вы думаете, каким автопроизводителем? Конечно, это был не ГАЗ, а BMW, известный своими инновационными разработками. На сегодняшний день этот принцип используют и другие автоконцерны.

В данной методике высота может корректироваться посредством вращения вала. В ней участвует промежуточный рычаг, влияющий на движение коромысла и позицию, которую занимает клапан. Сам же уровень поднятия меняется постоянно, исходя из того, в каком сейчас режиме функционирует силовой агрегат машины. Предусмотрена такая схема только для клапанов «впускного типа».

Принцип VVT-i

В зависимости от условия работы двигателя, система VVT-i плавно изменять фазы газораспределения. Это достигается путем поворота распределительного вала впускных клапанов относительно вала выпускных в диапазоне 20-30° (по углу поворота коленвала). В результате изменяется момент начала открытия впускных клапанов и величина времени «перекрытия» (то есть времени, когда выпускной клапан еще не закрыт, а впускной — уже открыт).

Основным элементом устройства является муфта VVT-i интегрированная в шкив, который выполняет роль корпуса муфты. Ротор муфты находится внутри и непосредственно соединен с распределительным валом.

Изначально фазы впускных клапанов установлены таким образом, чтобы добиться максимального крутящего момента при низкой частоте вращения коленвала. После того, как обороты значительно увеличиваются в корпусе муфты сделано несколько полостей, к которым по каналам подводится моторное масло из системы смазки.

Возросшее давление масла открывает клапан VVT-i, заполняя ту или иную полость, обеспечивает поворот ротора относительно корпуса и, соответственно, смещение распределительного вала на определенный угол.

Кулачки имеют определенную форму и при повороте коленчатого вала открывают впускные клапана немного раньше, а закрывают позже, что благоприятно сказывается на увеличении мощности и крутящего момента на высоких оборотах.

Технология VTEC

VTEC (Variable valve Timing and lift Electronic Control) — система динамического изменения фаз газораспределения, фирменная разработка компании Honda. Вначале система VTEC была успешно реализована в двигателях, применяемых в спортивных автомобилях, а затем, после признания и успеха данная система использована на двигателях гражданских автомобилей.

Особенность системы VTEC заключается в том, что возможно конструировать компактные, но очень мощные (в соотношении объем/л.с.) двигатели без применения дополнительных устройств (турбин, компрессоров), при этом технология производства подобных двигателей остается недорогой, а автомобиль с установленной на нем системой VTEC не испытывает проблем, характерных для турбированных автомобилей.

Принцип работы VTEC, в классическом виде по сравнению с другими системами газораспределения, конструктивно выглядит просто, — на распредвале между основными кулачками разместили один дополнительный кулачок большего профиля. Получается, что на каждый цилиндр приходится по одному дополнительному кулачку.

За наполнение топливной смесью камеры сгорания на низких и средних оборотах работы двигателя, отвечают два внешних кулачка, а центральный задействуется на высоких оборотах

Обратите внимание, что непосредственно на клапана воздействуют не кулачки распредвала, а через так называемые коромысла/рокеры, которых тоже три. Внешние кулачки воздействуют на рокеры, обеспечивающие открытие клапанов независимо друг от друга, а центральная пара кулачек-рокер, хотя и работает, но работает, что называется вхолостую

Клапаны имеют минимальную высоту подъема, фазы ГРМ характеризуются малой продолжительностью.

Как только двигатель достигает определенного количества оборотов, т.е. переходит в режим высоких оборотов, система VTEC активируется. Под давлением масла происходит смещение синхронизирующего штифта внутри рокеров таким образом, что все три рокера как бы становятся одной целой конструкцией, и после этого усилие на впускные клапаны передается от большого кулачка распредвала. Таким образом, увеличивается ход клапанов и фазы газораспределения.

При снижении количества оборотов система возвращается в исходную позицию.

Недостатками такой системы являются ступенчатый переход с одного режима на другой и конструктивная сложность реализации процесса блокировки.

ПРИНЦИП ДЕЙСТВИЯ VVT

Суть работы системы VVT в том, чтобы в реальном времени, ориентируясь на текущий режим работы двигателя, корректировать фазы открытия клапанов. В зависимости от конструктивных особенностей каждой из систем, реализовывается это несколькими путями:

    • поворотом распределительного вала относительно шестерни распредвала;
    • включением в работу на определенных оборотах кулачков, форма которых подходит для мощностных режимов;
    • изменением высоты подъема клапанов.

Наибольшее распространение получили системы, в которых регулировка фаз осуществляется изменением углового положения распределительного вала относительно шестерни. Несмотря на то что в работу разных систем положен схожий принцип, многие автоконцерны используются индивидуальные обозначения.

  • Renault – Variable Cam Phases (VCP).
  • BMW – VANOS. Как и у большинства автопроизводителей, изначально подобной системой укомплектовывался только распределительный вал впускных клапанов. Система, в которой гидромуфты изменения фаз газораспределительного механизма устанавливается и на выпускной распредвал, называется Double VANOS.
  • Toyota — Variable Valve Timing with intelligence (VVT-i). Как в случае с БМВ, наличие системы на впускном и выпускном распредвалах именуется Dual VVT.
  • Honda — Variable Timing Control (VTC).
  • Volkswagen — выбрал международное название — Variable Valve Timing (VVT).
  • Hyundai, KIA, Volvo, GM — Continuous Variable Valve Timing (CVVT).

Принцип работы

Принцип работы системы заключается в изменении положения распределительных валов относительно шкива коленчатого вала.

Система имеет два направления работы:

  • Опережение открытия клапанов.
  • Запаздывание открытия клапанов.

Опережение

Масляный насос при работе ДВС создает давление, которое подается на электромагнитный клапан CVVT. ЭБУ за счёт широтно-импульсной модуляции (ШИМ) управляет положением клапана VVT. Когда необходимо отрегулировать исполнительный механизм на максимальный угол опережения, клапан перемещается и открывает масляный канал к камере опережения гидромуфты CVVT. Из камеры запаздывания жидкость в это же время начинает сливаться. Это позволяет переместить ротор с распределительным валом относительно корпуса в противоположное относительно вращения коленвала направление.

Запаздывание

Принцип аналогичен предыдущему, однако клапан-соленоид при максимальном запаздывании открывает масляный канал к камере запаздывания. В это время ротор CVVT перемещаются в сторону направления вращения коленвала.

Детали клапанной группы

К клапанной группе относятся клапан, направляющая втулка клапана, клапанная пружина с опорной шайбой и деталями крепления (они же — «сухари»). Все описанное приведено на рисунке 4.13.

Клапан служит для закрытия и открытия впускных или выпускных каналов в головке блока цилиндров. Основными элементами клапана являются тарелка и стержень.

Тарелка клапана имеет шлифованную конусную рабочую поверхность — фаску (обычно под углом 45°), которой клапан плотно притерт к седлу.

Стержень клапана отшлифован и проходит через направляющую втулку. На конце стержня клапана имеется канавка или отверстие для крепления опорной шайбы пружины. Разноименные клапаны имеют тарелки различных диаметров (зачастую, больший — у впускного клапана) или отличаются специальными метками.

Рисунок 4.13 Клапанный механизм.

Седло клапана (на рисунке 4.13) представляет собой металлическое кольцо цилиндрической формы с обработанной под углом 45 градусов рабочей поверхностью (той самой, к которой прилегает тарелка клапана). Седла клапанов запрессованы в головку блока цилиндров. Существуют конструкции с заменяемыми седлами и с седлами, запрессованными наглухо.

Направляющая втулка, в которой клапан устанавливается стержнем, обеспечивает точную посадку клапана в седло. Втулки запрессовывают в головку цилиндров.

Рисунок 4.14 Клапан.

Клапанная пружина удерживает клапан в закрытом положении, обеспечивая плотную его посадку в гнезде, а также создает постоянное прижатие толкателя к поверхности кулачка распределительного вала. Пружину надевают на выходящий из втулки конец стержня клапана и закрепляют на нем в сжатом состоянии с помощью опорной шайбы с коническими разрезными сухарями, которые входят в выточку на стержне клапана. Иногда на клапан устанавливают две пружины: пружину меньшего диаметра — внутрь пружины большего диаметра. Это делается для того, чтобы избежать резонанса пружины на определенных частотах работы двигателя, а также для подстраховки на случай поломки пружины. Часто применяются пружины с переменным шагом витков. Это исключает вероятность возникновения вибрации пружины и ее поломки при большом числе оборотов коленчатого вала двигателя. При установке двух пружин их подбирают таким образом, чтобы направление навивки их витков было выполнено в разные стороны, что также устраняет опасность возникновения резонансных колебаний пружин.

Для ограничения количества масла, поступающего в направляющую втулку, и устранения подсоса масла в цилиндр через зазоры во втулке на верхних впускных клапанах под опорной шайбой ставят маслосъемные колпачки.

Толкатель служит для передачи осевого усилия от кулачка распределительного вала на стержень клапана или на штангу. Дело в том, что передавать усилие от кулачка распредвала лучше именное через промежуточное звено – толкатель. Поскольку при длительной работе элементы клапанного механизма изнашиваются и, когда приходит время замены чрезмерно износившихся деталей, проще заменять небольшой толкатель, нежели целый распредвал или клапаны.

Рисунок 4.15 Головка блока цилиндров с элементами газораспределительного механизма.

Как было отмечено выше, сейчас получили широкое распространение так называемые гидрокомпенсаторы. «Гидро», потому что работают за счет давления моторного масла, а «компенсаторы», так как компенсируют или, проще говоря, сводят на нет зазор между кулачком распределительного вала и толкателем во время работы.

Толкатели в большинстве двигателей устанавливают без втулок непосредственно в отверстия приливов головки блока цилиндров. В некоторых двигателях для толкателей имеются направляющие втулки, отлитые секцией на несколько цилиндров.

Коромысло. Изменяет направление передаваемого движения. Устанавливают зачастую, когда распределительный вал один, а клапанов на цилиндр два или четыре, но расположены они особым образом (смотрите рисунок 4.16). Коромысла устанавливают на бронзовых втулках или без втулок на осях, которые при помощи стоек закреплены на головке блока. Одно плечо коромысла располагается над стержнем клапана, а другое — под или над кулачком распределительного вала. Для регулировки зазора между стержнем клапана и коромыслом в конец коромысла вкручен регулировочный винт с контргайкой.

Рисунок 4.16 Привод клапанов через коромысло.

Трехступенчатое регулирование фаз газораспределения

Такая система позволяет переключаться с малых кулачков на большой зависимо от режима работы ДВС. Переход между режимами достигается благодаря тому, что происходит срабатывание специального механизма блокировки. Указанный блокирующий механизм основан на гидравлическом приводе.

Когда мотор работает на низких оборотах и при незначительной нагрузке, впускные клапаны приводятся в действие малыми кулачками распределительного вала, фазы газораспределения в таком режиме имеют небольшую продолжительность (узкая фаза).

Если двигатель раскручивается до определенных оборотов, система управления активирует механизм блокировки. В результате происходит соединение коромысел малых и большого кулачков, что обеспечивает жесткость конструкции. Соединение происходит при помощи особого стопорного штифта, а усилие на впускные клапаны начинает поступать от единственного большого кулачка. Малые кулачки распредвала на высоких оборотах двигателя становятся неактивными.

Выход на режим максимальных оборотов заставляет впускные клапаны работать от центрального кулачка большого размера. Указанный кулачок имеет особый профиль, который специально подобран для достижения максимального подъема клапанов, что означает повышение отдачи от ДВС на мощностных режимах работы агрегата. Такой подход значительно расширил возможности управления параметрами ГРМ для эффективного регулирования работы двигателя на различных режимах.

i-VTEC

Очередной разработкой компании Honda газораспределительного механизма с изменяемыми фазами VTEC является система, получившая обозначение i-VTEC (где буква «i» означает «Intellegence» — «интеллектуальный»).

«Интеллектуальность» же данной системы заключалась в следующем — управление изменением фаз осуществляется компьютером, при помощи функции поворота распредвала, регулируя угол опережения. Система i-VTEC позволила двигателям Honda получить больший крутящий момент на низких оборотах, что было постоянной проблемой для двигателей компании, — при высокой мощности они отличались малым крутящим моментом, получаемым на высоких оборотах.

Версия i-VTEC если не устранила, но существенно подкорректировала этот недостаток. Система i-VTEC начала устанавливаться на мощные моторы серии К и некоторых серии R, например, в автомобилях серии Type R, или Acura RSX. Другая версия, напротив, получила «экономичное» направление, и стала устанавливаться в гражданской серии двигателей (например на автомобилях CR-V, Accord, Element, Odyssey, и других).

Устройство системы CVVT

CVVT (Continuous Variable Valve Timing) – это система непрерывного регулирования фаз газораспределения двигателя, обеспечивающая более эффективное наполнение цилиндров свежим зарядом. Это достигается за счёт смещения момента открытия и закрытия впускного клапана.

Система CVVT автомобиля

Система включает в себя гидравлический контур, состоящий из:

  • Управляющего клапана-соленоида.
  • Фильтра системы VVT.
  • Исполнительного механизма (гидравлической муфты CVVT).

Все компоненты системы устанавливаются в головке . Фильтр системы VVT подлежит периодической чистке или замене.

Гидравлические муфты CVVT могут быть установлены как на впускном, так и на обоих валах ДВС.

Основные компоненты системы изменения фаз газораспределения

К дополнительным элементам системы также относятся датчики:

  • Положения и частоты оборотов коленчатого вала.
  • Положения распределительного вала.

Данные элементы подают сигнал на ЭБУ двигателя (блок управления). Последний обрабатывает информацию и формирует сигнал на электромагнитный клапан, регулирующий подачу масла в муфту CVVT.

Муфта CVVT

Гидравлическая муфта (фазовращатель) имеет звёздочку на корпусе. Она приводится в движение ремнем или цепью привода ГРМ. Распределительный вал жестко соединен с ротором фазовращателя. Между ротором и корпусом муфты расположены масляные камеры. За счёт давления масла, создаваемого возможно смещение ротора и корпуса между собой.

Муфта состоит из:

  • ротора;
  • статора;
  • стопорного штифта.

Стопорный штифт необходим для работы фазовращателей в аварийном режиме. Например, при понижении давления масла. Он выталкивается вперед, что позволяет замкнуть корпус и ротор гидравлической муфты в среднем положении.

Муфта и клапан VVT

Как работает управляющий клапан-соленоид VVT

Данный механизм служит для регулирования подачи масла на задержку и опережение открытия клапанов. Устройство состоит из следующих элементов:

  • Плунжер.
  • Разъём.
  • Пружина.
  • Корпус.
  • Золотник.
  • Отверстия для подвода масла, подачи и слива.
  • Обмотка.

ЭБУ двигателя формирует сигнал, после чего электромагнит перемещает золотник через плунжер. Это позволяет перепускать масло в разном направлении.

Очередной виток развития

Ступенчатое изменение продолжительности открытия и высоты подъема клапанов позволяет не только изменять фазы газораспределения, но и практически полностью снять с дроссельной заслонки функцию регулирования нагрузки на двигатель. Речь в первую очередь о системе Valvetronic от BMW. Именно специалисты БМВ впервые добились подобных результатов. Сейчас схожими разработками обладают: Toyota (Valvematic), Nissan (VVEL), Fiat (MultiAir), Peugeot (VTI).

Открытая на небольшой угол дроссельная заслонка создает значительное противодействие движению воздушных потоков. В итоге часть полученной от сгорания топливовоздушной смеси энергии уходит на преодоление насосных потерь, что негативно сказывается на мощности и экономически автомобиля.

1 — Серводвигатель; 2 — Червячный вал; 3 — Возвратная пружина; 4 — Кулисный блок; 5 — Распредвал впускных клапанов; 6 — Рампа; 7 — Гидравлическая система компенсации клапанного зазора (HVA) на стороне впуска; 8 — Впускной клапан; 9 — Выпускной клапан; 10 — Роликовый рычаг толкателя на стороне выпуска; 11 — Гидравлическая система компенсации клапанного зазора (HVA) на стороне выпуска; 12 — Роликовый рычаг толкателя на стороне впуска; 13 — Промежуточный рычаг; 14 — Эксцентриковый вал; 15 — Червячное колесо; 16 — Распредвал выпускных клапанов;

В системе Valvetronic количество поступающего в цилиндры воздуха регулируется степенью подъема и продолжительностью открытия клапанов. Реализовать это получилось при помощи внедрения в конструкцию эксцентрикового вала и промежуточного рычага. Рычаг связан червячной передачей с сервоприводом, управляет которым ЭБУ. Изменения положения промежуточного рычага смещает воздействие коромысла в сторону большего или меньшего открытия клапанов. Более подробно принцип работы показан на видео.

Сочетание фазовращателей на валах, бесступенчатой регулировки хода и длительности открытия клапанов позволяет, по оценкам инженеров, обрести 10–15%-процентное снижение расхода топлива и аналогичную прибавку крутящего момента.

Ресурс механизма

Многие автолюбители задаются вопросом: «Когда менять ремень ГРМ?» Понятное дело, что рассматриваемый нами элемент не вечен, а потому со временем подлежит замене. Особенно если уесть, что далеко не каждый ремень служит именно столько, сколько ему отмерял производитель. Дело в том, что на полках магазинов очень много бракованных деталей и подделок. Отличить их от оригинала весьма затруднительно, так как основная (несущая) часть находится внутри ремня. В таком случае ориентируемся на ценовую политику, пользуясь правилом «золотой середины». Также не следует покупать изделия без оригинальной упаковки и каких-либо обозначений.

Что касается конкретного ресурса, то все современные автопроизводители рекомендуют менять ремень каждые 80-100 тысяч километров пробега (или раз в 4-5 лет). Более точные значения вы можете узнать в руководстве по эксплуатации вашего авто, так как для каждой модели существует свой конкретный ресурс. Он может составлять и 70, и 200 тысяч километров.

Но опять же, точные сроки, в течение которых данная деталь будет исправно служить на благо вашего авто, предугадать очень сложно. Нельзя установить ремень и забыть о нем на ближайшие 80 тысяч километров пробега. Он может оборваться и на 10, и на 40 тысячах, а может прослужить и дольше указанного срока. Определить, когда менять ремень ГРМ, с точностью до километра просто невозможно. Поэтому раз в 3 месяца следует контролировать его внешнее состояние. Он не должен иметь микротрещин и отслоений. В противном случае вас ожидает обрыв ремня и, как следствие, капремонт мотора. И еще одно: данный элемент должен находиться всегда в натянутом состоянии. Проверить это можно следующим образом. Если ремень прокручивается пальцами руки более чем на 90 градусов, значит, его необходимо натянуть.

О грядущей замене также сигнализирует запах горелой резины в месте установки конструктивного элемента. Как только вы уловили характерный запах, лучше поменять его на новый.

КАК ФАЗЫ ВЛИЯЮТ НА РАБОТУ ДВИГАТЕЛЯ

Характер поведения газов внутри ДВС изменяется в зависимости от режима работы мотора. К примеру, на холостых оборотах скорость движения поршней значительно ниже, чем в режиме работы на максимальных оборотах. Соответственно, колебания газовой среды во впускном и выпускном коллекторах значительно зависят от режимной точки работы двигателя. Упомянутые колебания способны как приносить пользу, создавая резонансный наддув, так и вред – паразитные колебания, застои. Именно поэтому скорость и эффективность наполнения цилиндров в разных режимных точках работы двигателя значительно отличаются.

На низких оборотах максимальное наполнение цилиндров будет обеспечивать позднее открытие выпускного клапана и раннее закрытие впускного. В таком случае перекрытие клапанов (положение, в котором выпускные и впускные клапаны одновременно открыты) минимально, поэтому исключается возможность выталкивания оставшихся в цилиндре выхлопных газов обратно во впуск. Именно из-за широкофазных («верховых») распределительных валов на форсированных моторах часто приходится устанавливать повышенные обороты холостого хода.

На высоких оборотах для получения максимальной отдачи от двигателя фазы должны быть максимально широкими, так как за единицу времени поршни будут прокачивать намного больше воздуха. При этом перекрытие клапанов будет положительно влиять на продувку цилиндров (выход оставшихся выхлопных газов) и последующую наполняемость.

Именно поэтому установка системы, позволяющей подстроить фазы газораспределения, а в некоторых системах и высоту подъема клапанов, под режим работы двигателя, делает двигатель эластичней, мощней, экономичней и в то же время дружелюбней к окружающей среде.

Первооткрывателями системы изменения фаз газораспределения принято считать инженеров Honda. Они воплотили в модели Integra механизм VTEC, что позволило прибавить 1,6 литровому мотору от 40 до 60 л.с.

Устройство и принцип действия механизма газораспределения

В бензиновых и дизельных двигателях применяется механизм газораспределения клапанного типа, сейчас уже, в основном, с верхним расположением клапанов. Это значит, что клапаны находятся сверху, в головке блока цилиндров, как показано на рисунке 4.8.

Так, при верхнем расположении клапаны с пружинами и деталями их крепления установлены в направляющих втулках в головке блока цилиндров, в которой также отлиты впускные и выпускные каналы.

Рисунок 4.8 Головка блока цилиндров с газораспределительным механизмом.

Усилие от кулачков распределительного вала, расположенного здесь же – в головке блока, к клапанам передается с помощью толкателей и/или коромысел. Коромысла установлены шарнирно на оси, закрепленной на головке блока. Клапаны на головке закрыты крышкой.

О тепловом зазоре

Между стержнем клапана, толкателем или концом коромысла газораспределительного механизма должен быть зазор (так называемый тепловой зазор), который необходим для компенсации удлинения стержня клапана при его нагревании без нарушения плотности посадки клапана в гнезде. Другими словами, если бы не было зазора, грубо говоря, между кулачком распредвала и клапаном, то от нагрева до высокой температуры, клапан увеличился бы в длину и перестал бы плотно прилегать к седлу в головке блока цилиндров.

Величина зазора для двигателей разных марок устанавливается для впускных клапанов в холодном состоянии в пределах 0,15—0,30 мм, а для выпускных клапанов, подвергающихся большему нагреву, — в пределах 0,20—0,40 мм. Однако же, у некоторых производителей зазор может быть таков, что не попадет в указанные диапазоны.

Для регулировки величины этого зазора в механизме предусмотрены регулировочные устройства. Хотя слово «устройство» слишком громкое для регулировочного болта и стопорной гайки (Рисунок 4.9) или шайб различной толщины (Рисунок 4.10).

Рисунок 4.9 Регулировка теплового зазора с помощью болта.

Рисунок 4.10 Регулировка теплового зазора с помощью шайб(А – головка блока цилиндров без распределительного вала;Б – головка блока цилиндров с распределительным валом).

Сейчас очень распространена конструкция с гидравлическими компенсаторами, которые под давлением масла подводят коромысло или толкатель к кулачку распределительного вала, убирая тем самым негативное последствие теплового зазора, а именно — удар кулачка о толкатель во время работы. Но стоит упомянуть, что установка гидрокомпенсаторов удорожает конструкцию головки блока цилиндров и повышает свои требования к качеству используемого моторного масла и к частоте его замены, поскольку масляные каналы компенсатора могут забиваться продуктами износа.

Примечание
Более подробно о гидрокомпенсаторах приведено ниже.

Предварительно о распределительном вале

Примечание
Почему предварительно? Потому что для целостности восприятия данного раздела о распределительном вале необходимо сказать несколько слов, а более подробное описание данной детали будет дано ниже.

Правильность чередования различных тактов в цилиндрах двигателя достигается соответствующим расположением кулачков на распределительном валу, а также правильностью установки зацепления распределительных шестерен/шкивов с приводной шестерней/шкивом коленчатого вала.

В четырехтактном двигателе рабочий цикл во всех цилиндрах завершается за два оборота коленчатого вала. За это время в каждом цилиндре должны по одному разу открыться и закрыться впускной и выпускной клапаны, что происходит за каждый оборот распределительного вала. Таким образом, распределительный вал должен вращаться в два раза медленнее коленчатого вала. Для этого шестерня распределительного вала имеет вдвое большее число зубьев, чем шестерня коленчатого вала, либо же шкив по диаметру должен быть в два раза больше шкива коленчатого вала.

Цепь как привод ГРМ

В качестве альтернативы ремню существует иной вариант привода в движение элементов мотора. Он является гораздо более долговечным и по многим факторам обходит ременную передачу, это цепь ГРМ. Цепь ходит дольше, в то время как в среднем ремень нужно менять каждые 60- 120 тыс. км. (каждый автопроизводитель устанавливает различные сроки службы своих ремней).

Но многие автослесари советуют производить замену ремня заранее (в зависимости от его состояния), чтобы полностью исключить разрыв последнего. Поверьте, это будет последней вещью, которую вы бы желали, чтоб она произошла. Пренебрегать этим не стоит, иначе вас ждет долгий и дорогой ремонт мотора. Поскольку ремень- эластичная субстанция, со временем он может растянуться или наоборот огрубеть, на нем могут появиться трещины, а зубцы постепенно начать вылетать, что только приблизит автовладельца к катастрофическим для двигателя последствиям.

Допустим, ваш ремень ГРМ потерял натяжку и начал прыгать на зубьях звезд или звезды из него начали выгрызать зубцы. Рано или поздно такой ремень собьет настройки газораспределительной системы, клапан (ы) в одном из цилиндров останутся открытыми в ненужный момент и при ходе поршня в ВМТ произойдет встреча элементов мотора которая станет фатальной как для поршня, так и для клапанов (смятые или сломанные клапаны, прибитые поршни, задиры на стенках цилиндров и другие малоприятные последствия).

Чтобы этого никогда не произошло даем совет.

Совет от 1GAI.RU Визуально проверяйте состояние ремня на каждом ТО

И не важно сколько он проехал, 15 или 100 тыс. км

Меняйте ремень заранее, лучше не доездить на старом ремне тысяч 20 км, чем дождаться его обрыва. Также помните, что у ремней ГРМ есть не только ограничение по пробегу, но и по времени эксплуатации, обычно от 4 до 10 лет, посмотрите данные в мануале к вашей машине (связано это с тем, что резина со временем теряет свои свойства).

Также стоит всегда менять ремни ГРМ на подержанном автомобиле, купленном с рук. Если только нет железных доказательств тому, что ремень был недавно заменен. Но лучше перестраховаться!

Последствия оборванного ремня ГРМ

И так, второй вариант, цепь ГРМ. Обычно в течение всей жизни двигателя автомобиля ее не нужно менять, цепь можно считать неотъемлемой частью блока цилиндров, нуждающийся разве что в смазке это уже огромный плюс по сравнению с ременным типом передачи. Хотя ремень дешевле в производстве, а значит и в стоимости, его замена может быть дорогой в зависимости от их установки. В качестве примера можно привести двигатель экзотического автомобиля Alfa Romeo Twinspark. Компоновка подкапотного пространства машины для лучшей развесовки такова, что двигатель расположен вплотную к задней стенке моторного отсека, а сам ремень установлен в задней части двигателя, а не сбоку или спереди, как на большинстве моделей. Этот конструкторский изыск выливается в большой счет при замене ремня, в среднем во многих странах мира за работу нужно заплатить 30 тыс. рублей.

Впрочем, и цепной привод не без изъянов. Со временем звенья цепи также растягиваются или происходит поломка натяжителя, появляется свободный ход цепи, и звон при работе мотора, это чревато такими же проблемами, как и с порванным ремнем ГРМ, клапаны и поршни перестают работать в унисон и привет дорогой ремонт! Об этом также стоит помнить!

Alfa Romeo GTV также имел нестандартное расположение ремня ГРМ. Но это было пол беды. К сожалению, ремни на этом автомобиле не выхаживали большого ресурса, менять их приходилось часто, поэтому стоимость обслуживания автомобиля была нешуточная.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector