Сведения из внешней баллистики

Содержание:

Определение силы трения

Когда мы говорим «абсолютно гладкая поверхность» — это значит, что между ней и телом нет трения. Такая ситуация в реальной жизни практически невозможна. Избавиться от трения полностью невероятно трудно.

Чаще при слове «трение» нам приходит в голову его «тёмная» сторона —  из-за трения скрипят и  прекращают качаться качели, изнашиваются детали машин. Но представьте, что вы стоите на идеально гладкой поверхности, и вам надо идти или бежать. Вот тут трение бы, несомненно, пригодилось. Без него вы не сможете сделать ни шагу, ведь между ботинком и поверхностью нет сцепления, и вам не от чего оттолкнуться, чтобы двигаться вперёд.

Трение — это взаимодействие, которое возникает в плоскости контакта поверхностей соприкасающихся тел. Сила трения — это величина, которая характеризует это взаимодействие по величине и направлению. 

Основная особенность: сила трения приложена к обоим телам, поверхности которых соприкасаются, и направлена в сторону, противоположную мгновенной скорости движения тел друг относительно друга. Поэтому тела, свободно скользящие по какой-либо горизонтальной поверхности, в конце концов остановятся. Чтобы тело двигалось по горизонтальной поверхности без торможения, к нему надо прикладывать усилие, противоположное и хотя бы равное силе трения. В этом заключается суть силы трения. 

ФИЗИКА

§ 3.15. Сила сопротивления при движении тел в жидкостях и газах

При движении твердого тела в жидкости или газе или при движении одного слоя жидкости (газа) относительно другого тоже возникает сила, тормозящая движение, — сила жидкого трения или сила сопротивления.

Сила сопротивления направлена параллельно поверхности соприкосновения твердого тела с жидкостью (газом) в сторону, противоположную скорости тела относительно среды, и тормозит движение(1).

Сила сопротивления (жидкого трения) обычно значительно меньше силы сухого трения. Именно поэтому для уменьшения сил трения между движущимися деталями машин применяют смазку.

Главная особенность силы сопротивления состоит в том, что она появляется только при относительном движении тела и окружающей среды. Сила трения покоя в жидкостях и газах полностью отсутствует. Это приводит к тому, что усилием рук можно сдвинуть тяжелое тело, например баржу, в то время как сдвинуть с места, скажем, гусеничный трактор усилием рук просто невозможно.

Убедитесь в том, что плавающий деревянный брусок сразу же придет в движение, если на него слегка подуть. Попробуйте проделать то же самое с бруском, лежащим на столе.

Модуль силы сопротивления c зависит от размеров, формы и состояния поверхности тела, свойств (вязкости) среды (жидкости или газа), в которой движется тело, и, наконец, от относительной скорости движения тела и среды.

Для того чтобы уменьшить силу сопротивления среды, телу придают обтекаемую форму. Наиболее выгодна в этом отношении сигарообразная форма (рис. 3.40), близкая к форме падающей капли дождя или рыбы.

Рис. 3.40

Влияние формы тела на силу сопротивления наглядно показано на рисунке 3.41. Модуль силы сопротивления цилиндра обозначим через . Конусообразная насадка к цилиндру уменьшает силу сопротивления от 1/2 до 1/4 в зависимости от размера угла при вершине конуса. Сглаженная насадка доводит силу сопротивления до 1/5. Наконец, если придать телу сигарообразную форму, то при том же поперечном сечении сила сопротивления уменьшается до 1/25. По сравнению с телом сигарообразной формы сила сопротивления для шара (имеющего такую же площадь поперечного сечения) больше в несколько раз, а для тонкого диска, плоскость которого перпендикулярна направлению скорости, — в несколько десятков раз. Особенно велика сила сопротивления, возникающая при движении полусферы вогнутой стороной вперед. По этой причине парашюты имеют часто форму полусферы.

Рис. 3.41

Примерный характер зависимости модуля силы сопротивления от модуля относительной скорости тела приведен на рисунке 3.42. Если тело неподвижно относительно вязкой среды (относительная скорость равна нулю), то сила сопротивления равна нулю. С увеличением относительной скорости сила сопротивления растет медленно, а потом все быстрее и быстрее.

Рис. 3.42

При малых скоростях движения в жидкости (газе) силу сопротивления можно считать приближенно прямо пропорциональной скорости движения тела относительно среды:

где k1 — коэффициент сопротивления, зависящий от формы, размеров, состояния поверхности тела и свойств среды — ее вязкости. Коэффициент k2 в СИ выражается в Н • с/м = кг/с. Его значение определяют опытным путем.

При больших скоростях относительного движения сила сопротивления пропорциональна квадрату скорости:

где коэффициент сопротивления k2 выражается в Н • с2/м2 = = кг/м.

Какую именно формулу следует применять в данном конкретном случае, устанавливают опытным путем. При падении тел в воздухе сила сопротивления становится пропорциональной квадрату скорости практически с самого начала падения.

При ускоренном движении тела в жидкости для учета воздействия жидкости на это тело надо к массе тела прибавить так называемую присоединенную массу. Присоединенная масса зависит от формы тела и плотности среды. В дальнейшем при решении задач присоединенную массу мы учитывать не будем.

Жидкое трение возникает между поверхностью твердого тела и окружающей его жидкой или газообразной средой, в которой оно движется. При медленном движении сила сопротивления пропорциональна скорости, а при быстром — квадрату скорости.

(1) Впрочем, движущийся поток воды или воздуха может увлекать за собой тело. Например, когда ветер гонит опавшие листья, то сила трения со стороны воздуха направлена по движению листьев. Но и в этом случае она противоположна скорости движения тела (листьев) относительно среды (воздуха). В приведенном примере воздух и листья, хотя и движутся в одном направлении, но скорость воздуха больше, листья отстают от ветра.

Суммарное сопротивление

Является суммой всех видов сил сопротивления:

F=F+Fi{\displaystyle F=F_{0}+F_{i}}

Так как сопротивление при нулевой подъёмной силе F{\displaystyle F_{0}} пропорционально квадрату скорости, а индуктивное Fi{\displaystyle F_{i}} — обратно пропорционально квадрату скорости, то они вносят разный вклад при разных скоростях. С ростом скорости F{\displaystyle F_{0}} растёт, а Fi{\displaystyle F_{i}} — падает, и график зависимости суммарного сопротивления F{\displaystyle F} от скорости («кривая потребной тяги») имеет минимум в точке пересечения кривых F{\displaystyle F_{0}} и Fi{\displaystyle F_{i}}, при которой обе силы сопротивления равны по величине. При этой скорости самолёт обладает наименьшим сопротивлением при заданной подъёмной силе (равной весу), а значит, наивысшим аэродинамическим качеством.

Мощность, требуемая для преодоления силы паразитного сопротивления, пропорциональна кубу скорости, а мощность, требуемая для преодоления индуктивного сопротивления, обратно пропорциональна скорости, поэтому суммарная мощность тоже имеет нелинейную зависимость от скорости. При некоторой скорости мощность (а значит, и расход топлива) становится минимальной — это скорость наибольшей продолжительности полёта (барражирования). Скорость, при которой достигается минимум отношения мощности (расхода топлива) к скорости полёта, является скоростью максимальной дальности полёта или крейсерской скоростью.

Сопротивление при нулевой подъёмной силе

Эта составляющая сопротивления не зависит от величины создаваемой подъёмной силы и складывается из профильного сопротивления крыла, сопротивления элементов конструкции самолёта, не вносящих вклад в подъёмную силу, и волнового сопротивления. Последнее является существенным при движении с около- и сверхзвуковой скоростью, и вызвано образованием ударной волны, уносящей значительную долю энергии движения. Волновое сопротивление возникает при достижении самолётом скорости, соответствующей критическому числу Маха, когда часть потока, обтекающего крыло самолёта, приобретает сверхзвуковую скорость. Критическое число М тем больше, чем больше угол стреловидности крыла, чем более заострена передняя кромка крыла и чем оно тоньше.

Сила сопротивления направлена против скорости движения, её величина пропорциональна характерной площади S, плотности среды ρ и квадрату скорости V:

F=CFρv22S{\displaystyle F=C_{F}{\frac {\rho v^{2}}{2}}S}
CF{\displaystyle C_{F}} — безразмерный аэродинамический коэффициент сопротивления, получается из критериев подобия, например, чисел Рейнольдса и Фруда в аэродинамике.

Определение характерной площади зависит от формы тела:

  • в простейшем случае (шар) — площадь поперечного сечения;
  • для крыльев и оперения — площадь крыла/оперения в плане;
  • для пропеллеров и несущих винтов вертолётов — либо площадь лопастей, либо ометаемая площадь винта;
  • для подводных объектов обтекаемой формы — площадь смачиваемой поверхности;
  • для продолговатых тел вращения, ориентированных вдоль потока (фюзеляж, оболочка дирижабля) — приведённая волюметрическая площадь, равная V2/3, где V — объём тела.

Мощность, требуемая для преодоления данной составляющей силы лобового сопротивления, пропорциональна кубу скорости (P=F⋅V=CFρV32S{\displaystyle P=F\cdot V=C_{F}{\dfrac {\rho V^{3}}{2}}S}).

Индуктивное сопротивление в аэродинамике

Индуктивное сопротивление (англ. lift-induced drag) — это следствие образования подъёмной силы на крыле конечного размаха. Несимметричное обтекание крыла приводит к тому, что поток воздуха сбегает с крыла под углом к набегающему на крыло потоку (т. н. скос потока). Таким образом, во время движения крыла происходит постоянное ускорение массы набегающего воздуха в направлении, перпендикулярном направлению полёта, и направленном вниз. Это ускорение, во-первых, сопровождается образованием подъёмной силы, а во-вторых — приводит к необходимости сообщать ускоряющемуся потоку кинетическую энергию. Количество кинетической энергии, необходимое для сообщения потоку скорости, перпендикулярной направлению полёта, и будет определять величину индуктивного сопротивления. На величину индуктивного сопротивления оказывает влияние не только величина подъёмной силы (так, в случае отрицательной работы подъёмной силы направление вектора индуктивного сопротивления противоположно вектору силы, обусловленной тангенсальным трением), но и её распределение по размаху крыла. Минимальное значение индуктивного сопротивления достигается при эллиптическом распределении подъёмной силы по размаху.
При проектировании крыла этого добиваются следующими методами:

  • выбором рациональной формы крыла в плане;
  • применением геометрической и аэродинамической крутки;
  • установкой вспомогательных поверхностей — вертикальных законцовок крыла.

Индуктивное сопротивление пропорционально квадрату подъёмной силы Y, и обратно пропорционально площади крыла S, его удлинению λ{\displaystyle \lambda }, плотности среды ρ и квадрату скорости V:

Fi=CFiρV22S=Cy2πλρV22S=1πλY2ρV22S{\displaystyle F_{i}=C_{F_{i}}{\frac {\rho V^{2}}{2}}S={\frac {C_{y}^{2}}{\pi \lambda }}{\frac {\rho V^{2}}{2}}S={\frac {1}{\pi \lambda }}{\frac {Y^{2}}{{\frac {\rho V^{2}}{2}}S}}}

Таким образом, индуктивное сопротивление вносит существенный вклад при полёте на малой скорости (и, как следствие, на больших углах атаки). Оно также увеличивается при увеличении веса самолёта.

Сила сопротивления дороги

Сила
сопротивления дороги представляет
собой сумму сил со­противления
качению и сопротивления подъему:

Рд
=
Рк+
Рп

ИЛИ

Рд
= f
G
cos
α+
G
sin
α=
G
(f
cos α
+ sin
α).

Выражение
в скобках, характеризующее дорогу в
общем слу­чае,
называется коэффициентом сопротивления
дороги:

ψ
=
f

cos α
+ sin
α.

При
малых углах подъема (не превышающих
5°), характерных для большинства
автомобильных дорог с твердым покрытием,
ко­эффициент
сопротивления дороги

ψ
= f
+ i.

Рис.
3.17. Зависимости силы сопро­тивления
дороги Рди
мощности Nд
,
затрачиваемой
на его преодоление, от
скорости автомобиля

Сила
сопротивления дороги в этом
случае

Рд
=
ψ
G
.

Зная
силу сопротивления доро­ги,
можно определить мощность, кВт,
необходимую для его преодо­ления:

,

где
скорость автомобиля vвыражена
в м/с, вес G
– в Н, мощ­ность
Nд
— в кВт.

Зависимости
силы сопротивления дороги Рди
мощности Nд,
затрачиваемой
на его преодоление, от скорости автомобиля
vпредставлены
на рис. 3.17.

Определение коэффициента сопротивления (трения) скольжения

ОПРЕДЕЛЕНИЕ

Коэффициентом сопротивления (трения)
называют коэффициент пропорциональности, связывающий силу трения () и силу нормального давления (N) тела на опору. Обычно данный коэффициент обозначают греческой буквой . В таком случае коэффициент трения определим как:

Речь идет о коэффициенте трения скольжения, который зависит от совокупных свойств трущихся поверхностей и является безразмерной величиной. Коэффициент трения зависит от: качества обработки поверхностей, трущихся тел, присутствия на них грязи, скорости движения тел друг относительно друга и т.д. Коэффициент трения определяют эмпирически (опытным путем).

Как рассчитать и измерить силу трения

Чтобы понять, как измеряется сила трения, нужно понять, какие факторы влияют на величину силы трения. Почему так трудно двигать холодильник?

Самое очевидное — его масса играет первостепенную роль. Можно вытащить из него все продукты и тем самым уменьшить его массу, и, следовательно, силу давления холодильника на опору (пол). Пустой холодильник сдвинуть с места гораздо легче!Следовательно, чем меньше сила нормального давления тела на поверхность опоры, тем меньше и сила трения. Опора действует на тело с точно такой же силой, что и тело на опору, только направленной в противоположную сторону. 

Сила реакции опоры обозначается N. Можно сделать вывод

Второй фактор, влияющий на величину силы трения, — материал и степень обработки соприкасающихся поверхностей. Так, двигать холодильник по бетонному полу гораздо тяжелее, чем по ламинату. Зависимость силы трения от рода и качества обработки материала обеих соприкасающихся поверхностей выражают через коэффициент трения.  

Коэффициент трения обозначается буквой μ (греческая буква «мю»). Коэффициент определяется отношением силы трения к силе нормального давления. 

Он чаще всего попадает в интервал  от нуля до единицы, не имеет размерности и определяется экспериментально.

Можно предположить, что сила трения зависит также от площади соприкасающихся поверхностей. Однако, положив холодильник набок, мы не облегчим себе задачу.

Ещё Леонардо да Винчи экспериментально доказал, что сила трения не зависит от площади соприкасающихся поверхностей при прочих равных условиях.  

Сила трения скольжения, возникающая при контакте твёрдого тела с поверхностью другого твёрдого тела прямо пропорциональна силе нормального давления и не зависит от площади контакта. 

Этот факт отражён в законе Амонтона-Кулона, который можно записать формулой:

где  μ — коэффициент трения, N — сила нормальной реакции опоры.

Для тела, движущегося по горизонтальной поверхности, сила реакции опоры по модулю равна весу тела: 

Определение коэффициента сопротивления формы

ОПРЕДЕЛЕНИЕ

Коэффициент сопротивления формы
— физическая величина, которая определяет реакцию вещества на перемещение тела внутри нее. Можно сказать иначе: это физическая величина, которая определяет реакцию тела на движение в веществе. Данный коэффициент определяется эмпирически, его определением служит формула:

где — сила сопротивления, — плотность вещества, — скорость течения вещества (или скорость движения тела в веществе), площадь проекции тела на плоскость перпендикулярную к направлению движения (перпендикулярная потоку).

Иногда, если рассматривают движение вытянутого тела, то считают:

где V — объем тела.

Рассматриваемый коэффициент сопротивления является безразмерной величиной. Он не учитывает эффектов на поверхности тел, поэтому формула (3) может стать не пригодна, если рассматривается вещество, которое имеет большую вязкость. Коэффициент сопротивления (C) является постоянной величиной пока число Рейнольдса (Re) является неизменным. В общем случае .

Если тело имеет острые ребра, то эмпирически получено, что для таких тел коэффициент сопротивления остается постоянным в широкой области чисел Рейнольдса. Так опытным путем получено, что для круглых пластинок поставленных поперек воздушного потока, при значения коэффициента сопротивления находятся в пределах от 1,1 до 1,12. При уменьшении числа Рейнольдса () закон сопротивления переходит в закон Стокса, который для круглых пластинок имеет вид:

Сопротивление шаров было исследовано для широкой области чисел Рейнольдса до Для получили:

В справочниках представлены коэффициенты сопротивления для круглых цилиндров, шаров и круглых пластинок в зависимости от числа Рейнольдса.

В авиационной технике задача о нахождении формы тела с минимальным сопротивлением имеет особое значение.

3.12. Уравнение движения автомобиля

Для вывода уравнения
движения рассмотрим разгон автомоби­ля
на подъеме (рис. 3.21).

Спроецируем все
силы, действующие на автомобиль, на
по­верхность дороги:

(3.19)

Подставим
в формулу (3.19) касательные реакции дороги
Rx1,
и Rx2,

объединим
члены с коэффициентом сопротивления
каче­нию ƒ и члены с ускорением j
и, принимая во внимание соотно­шения
ƒ(Rz2+Rz1
) = РK,
и
jk1
+ jk2
= jk
, а также коэффициент уче­та вращающихся
масс, получим уравнение движения
автомобиля в общем виде:

Или

(3.20)

Уравнение движения
автомобиля выражает связь между
дви­жущими силами и силами сопротивления

Рис.
3.21. Схема сил, действую­
щих
на автомобиль на подъеме

движению.
Оно позволяет определить режим движения
автомобиля в любой момент.

Так, например, при
установившемся (равномерном) движе­нии

Из уравнения (3.20)
следует, что безостановочное движение
автомобиля возможно только при условии

р

гв-

Данное неравенство
связыва­ет конструктивные параметры
ав­томобиля с эксплуатационными
факторами, обусловливающими сопротивление
движению. Одна­ко оно не гарантирует
отсутствия буксования ведущих колес.
Безо­становочное движение автомоби­ля
без буксования ведущих колес возможно
лишь при соблюдении условия

Условия
равномерного движения при отсутствии
буксования ведущих колёс записывается
в виде

3.13. Силовой баланс автомобиля

Представим
уравнение движения автомобиля в следующем
виде:

(3.21)

В такой форме оно
называется уравнением силового баланса
автомобиля и выражает соотношение между
тяговой силой на ве­дущих колесах и
силами сопротивления движению.

На основании
уравнения (3.21) строится график силового
ба­ланса, позволяющий оценивать
тягово-скоростные свойства ав­томобиля.

При
построении графика силового баланса
(рис. 3.22) сначала строят тяговую
характеристику автомобиля. Затем наносят
зави­симость силы сопротивления
дороги от скорости. Если коэффи­циент
сопротивления дороги — постоянная
величина, то указан­ная зависимость
представляет собой прямую линию,
параллель­ную оси абсцисс, а при
непостоянном коэффициенте сопротив­ления
дороги — кривую параболической формы.
После этого от кривой, характеризующей
силу сопротивления дороги, отклады­вают
вверх значения силы сопротивления
воздуха при различных скоростях движения.
Полученная зависимость

Ссылки

  • «Улучшенная эмпирическая модель для прогнозирования базового сопротивления ракетных конфигураций на основе новых данных о аэродинамической трубе», Франк Дж. Мур и др. НАСА Лэнгли Центр
  • «Вычислительное исследование базового снижения лобового сопротивления снаряда при различных режимах полета», М.А. Сулиман и др. Материалы 13-й Международной конференции по аэрокосмическим наукам и авиационным технологиям, ASAT-13, 26 — 28 мая 2009 г.
  • ‘Base Drag and Thick Trailing Edges’, Зигард Ф. Хёрнер, Air Materiel Command, в: Journal of the Aeronautical Sciences, октябрь 1950, стр. 622-628.

Что такое сила сопротивления в физике

Сила сопротивления — сила, которая возникает во время движения тела в жидкой или газообразной среде и препятствует этому движению.

Важно уметь отличать силу сопротивления от силы трения. Во втором случае рассматривается характер взаимодействия твердых тел друг с другом

Таким образом, трение можно наблюдать, когда какой-либо предмет перемещается по поверхности другого. Вектор этой силы будет направлен в противоположную сторону направления движения.

Для того чтобы рассчитать силу сопротивления необходимо умножить коэффициент сопротивления материала на силу, провоцирующую перемещение этого предмета.

Примечание

В качестве примера силы сопротивления можно рассмотреть движение поезда. Воздух, окружающий состав, замедляет скорость его перемещения, то есть возникает сила сопротивления.

От чего зависит в механике и динамике

Сила сопротивления зависит от нескольких факторов. На ее величину оказывают влияния следующие характеристики:

  1. Особенности среды и показатели ее плотности, к примеру, жидкость обладает большей плотностью, чем газообразное вещество.
  2. Форма тела, так как предметы, обладающие обтекаемыми вытянутыми вдоль направления движения формами подвержены меньшему сопротивлению, чем тела с множеством плоскостей, расположенных перпендикулярно движению.
  3. Скорость перемещения тела.

Силу сопротивления можно наблюдать опытным путем. К примеру, если предмет переместился на величину пути l , когда на него воздействует сила сопротивления, обозначение которой представлено, как \($$F_{r}$$\), затрачивается работа, которую можно рассчитать по формуле:

\($$A=F_{r}\times l$$\)

В случае, когда площадь поперечного сечения движущегося предмета равна S, он будет сталкиваться с частицами, объем которых составляет Sl. Полную массу этих частиц можно представить, как \($$\rho_{ a}\times Sl$$\). Если частицы полностью увлекаются телом, они приобретают скорость V. Кинетическую энергию можно рассчитать по формуле:

\($$K=\frac{\rho_{ a}\times Sl\times V^{2}}{2}$$\)

Энергию создают внешние силы за счет своей работы с мощностью по определению силы сопротивления. Откуда, A=K. Таким образом,

\($$F_{r}=\frac{\rho_{ a}\times S\times V^{2}}{2}$$\)

В этом случае зависимость силы сопротивления от скорости перемещения объекта возрастает и становится пропорциональна ее второй степени. В отличие от силы внутреннего трения ее обозначают, как силу динамического лобового сопротивления.

Следует отметить, что теория, в которой частицы среды полностью увлекаются транспортируемыми телами, преувеличена. В условиях реального времени любой движущийся предмет обтекаем потоком, который снижает воздействие на него сил сопротивления. Поэтому при расчетах нередко используют коэффициент сопротивления С, обозначая силу лобового сопротивления формулой:

\($$F_{r}=C\times S\times \frac{\rho_{ a}\times V^{2}}{2}$$\)

Сила сопротивления движению тела в воде — SportWiki энциклопедия

Сила сопротивления движению тела в воде

Для тела человека, плывущего в воде, при его равномерной скорости полное гидродинамическое сопротивление имеет вид

Rx = KV2,

где Rx — суммарная величина сопротивления; V — скорость плавания, м/с; К — безразмерный коэффициент сопротивления, составляющими которого являются:

Cx(p/2)S,

где Сх — коэффициент обтекаемости, иногда называемый коэффициентом пропорциональности или коэффициентом лобового сопротивления; р — плотность воды; S — миделевое сечение, являющееся проекцией тела на плоскость, перпендикулярную направлению движения.

Коэффициент обтекаемости тела зависит от формы тела, соотношения его ширины и длины, величины и состояния поверхности и для человека колеблется в пределах 0,5 — 3.

Как видно из формулы, величина полного гидродинамического сопротивления прямо пропорциональна величине миделевого сечения. При плавании человека величина миделевого сечения постоянно изменяется. Наименьшая проекция будет в том случае, если тело занимает в воде горизонтальное положение. Величину миделевого сечения необходимо учитывать не только при выборе рационального положения тела, но и при выполнении рабочих и подготовительных движений. Пловец продвигается вперед, опираясь конечностями о воду и отталкиваясь от нее. Отталкивания будут тем более эффективными, чем больше они будут вызывать сопротивление своему движению, которое зависит от величины миделевого сечения.

Практически это достигается тем, что ладони во время гребка располагаются по возможности перпендикулярно направлению движения. Поэтому при выполнении гребковых движений конечностями для обеспечения продвижения тела вперед и, если необходимо, поддержания его в более высоком положении следует ориентировать гребущие поверхности так, чтобы их миделевое сечение достигало возможно большей величины.

После выполнения гребковых движений пловцу нужно совершать подготовительные движения. При плавании кролем на груди, на спине и дельфином подготовительные движения руками совершаются над поверхностью воды. Иное дело — при плавании брассом, когда подготовительное движение рук и ног необходимо выполнять под поверхностью воды. При таких движениях проекция на плоскость, перпендикулярную движению, должна быть наименьшей. Поэтому движение рук вперед брассисты выполняют с прижатыми к телу плечами и близко к поверхности воды, а сгибание тазобедренных суставов — быстро, чтобы уменьшить время действия сопротивления передней поверхностью бедра.

При движении тела человека в воде величина сопротивления растет пропорционально квадрату скорости. Если пловец увеличит скорость своего движения в 3 раза, то сопротивление возрастает в 9 раз.

Поскольку пловец движется неравномерно, поэтому при расчетах сопротивления в свободном плавании возникают затруднения, так как при ориентации на среднюю скорость дистанции появляются погрешности. Для того чтобы получить более точные данные общей величины сопротивления, измеряют скорость тела за очень короткий промежуток времени. Такая скорость называется мгновенной. Колебания мгновенной скорости как в одном цикле движения, так и на всей дистанции бывают весьма значительными. Например, внутрицикловая скорость при плавании брассом может изменяться от 0,4 до 1,8 м/с.

Что ещё влияет на аэродинамику?

Конечно, конструкторы стараются по максимуму снизить сопротивление авто при движении и повысить прижимную силу. Но особенности эксплуатации авто и свой взгляд автовладельцев на внешние особенности машины вносят свои коррективы, причем в некоторых случаях – значительны.

Аэродинамическое сопротивление разных автомобилей в зависимости от скорости

К примеру, установка багажника на крышу, даже с аэродинамической формой увеличивает поперечную проекцию авто и сильно влияет на обтекаемость, это сразу сказывается на потреблении топлива.

Также расход повышается от езды с открытыми окнами и люком, использование защитных и декоративных обвесов, перевозка негабаритных грузов, выступающих за авто, нарушение положения конструктивных элементов, расположенных под днищем, повышение клиренса.

Но автовладелец также может и внести коррективы, которые положительно повлияют на аэродинамику автомобиля. К ним относится использование аэродинамических обвесов, установка спойлера, уменьшение клиренса.

Уравнение координаты и скорости при свободном падении

Уравнение координаты при свободном падении позволяет вычислять кинематические параметры движения даже в случае, если оно меняет свое направление. Так как при вертикальном движении тело меняет свое положение лишь относительно оси ОУ, уравнение координаты при свободном падении принимает вид:

Уравнение скорости при свободном падении:

vy = v0y + gyt

Полезные факты

  • В момент падения тела на землю y = 0.
  • В момент броска тела от земли y = 0.
  • Когда тело падает без начальной скорости (свободно) v = 0.
  • Когда тело достигает наибольшей высоты v = 0.

Построение чертежа

Решать задачи на нахождение кинематических параметров движения тела, брошенного вертикально вверх, проще, если выполнить чертеж. Строится он в 3 шага.

План построения чертежа

  • Чертится ось ОУ. Начало координат должно совпадать с уровнем земли или с самой нижней точки траектории.
  • Отмечаются начальная и конечная координаты тела (y и y).
  • Указываются направления векторов. Нужно указать направление ускорения свободного падения, начальной и конечной скоростей.

Уравнение скорости:

–v = v – gtпад

Уравнение координаты:

–v = v – gt

Уравнение координаты:

Тело подбросили от земли, на одной и той же высоте оно побывало дважды

Чертеж:

Интервал времени между моментами прохождения высоты h:

∆t = t2 – t1

Уравнение координаты для первого прохождения h:

Уравнение координаты для второго прохождения h:

Важно! Для определения знаков проекций скорости и ускорения нужно сравнивать направления их векторов с направлением оси ОУ. Пример №5

Тело падает из состояния покоя с высоты 50 м. На какой высоте окажется тело через 3 с падения?

Пример №5. Тело падает из состояния покоя с высоты 50 м. На какой высоте окажется тело через 3 с падения?

Из условия задачи начальная скорость равна 0, а начальная координата — 50.

Поэтому:

Через 3 с после падения тело окажется на высоте 5 м.

Определение коэффициента сопротивления (трения) скольжения

ОПРЕДЕЛЕНИЕ

Коэффициентом сопротивления (трения)
называют коэффициент пропорциональности, связывающий силу трения () и силу нормального давления (N) тела на опору. Обычно данный коэффициент обозначают греческой буквой . В таком случае коэффициент трения определим как:

Речь идет о коэффициенте трения скольжения, который зависит от совокупных свойств трущихся поверхностей и является безразмерной величиной. Коэффициент трения зависит от: качества обработки поверхностей, трущихся тел, присутствия на них грязи, скорости движения тел друг относительно друга и т.д. Коэффициент трения определяют эмпирически (опытным путем).

Подведём итоги

  1. Сила трения покоя меняется от нуля до максимального значения 0 < Fтр.покоя < Fтр.пок.макс  в зависимости от внешнего воздействия.
  2. Максимальная сила трения покоя почти равна силе трения скольжения, лишь немного её превышая. Можно приближенно считать, что Fтр. = Fтр.пок.макс 
  3. Силу трения скольжения можно рассчитать по формуле Fтр. = μ ⋅ N,  где  μ — коэффициент трения, N — сила нормальной реакции опоры.
  4. При равномерном прямолинейном скольжении по горизонтальной поверхности сила тяги равна силе трения скольжения Fтр. = Fтяги.
  5. Коэффициент трения μ зависит от рода и степени обработки  поверхностей 0 < μ < 1 . 
  6. При одинаковых силе нормального давления и коэффициенте трения сила трения качения всегда меньше силы трения скольжения.
Учите физику вместе с домашней онлайн-школой «Фоксфорда»! По промокоду PHYSICS72020 вы получите бесплатный доступ к курсу физики 7 класса, в котором изучается закон силы трения. 
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector